Patient-ventilator asynchrony reference card

### Asynchrony	Description	On the waveform	Waveform example	Common possible causes
Trigger asynchronies - during the beginning of inspiration
Delayed triggering
The time interval between the patient's inspiratory effort and the delivery of a mechanical breath is increased
Flow waveform: Look for a longer-than-normal time interval between the positive deflection in flow \(^1\) and the delivery of ventilatory support \(^2\)
![Flow waveform example](image)
- Trigger threshold set too high
- Ventilator pneumatics
- Presence of AutoPEEP
- Low respiratory drive
- Weak inspiratory effort

Ineffective effort
The patient's inspiratory effort fails to trigger the delivery of a mechanical breath
Flow waveform: Look for an abrupt change in the steepness of the waveform \(^1\) (decrease in expiratory flow or increase in inspiratory flow) that is not followed by ventilatory support \(^2\)
![Flow waveform example](image)
- Trigger threshold set too high
- Pressure support too high
- Set frequency and/or inspiratory time too high (in controlled modes)
- Tidal volume set too high
- Presence of AutoPEEP
- Low respiratory drive
- Weak inspiratory effort
- Sedation

Auto triggering
A mechanical breath delivered without an inspiratory effort
Pressure waveform: Look for a delivered mechanical breath showing no drop in airway pressure \(^1\) at the beginning of the inspiratory phase
![Pressure waveform example](image)
- Trigger threshold set too high
- Air leaks in the endotracheal tube cuff, ventilator circuit, or chest tube
- Flow oscillations (water or secretion in the circuit, cardiac oscillations)

Flow asynchronies - during the gas delivery

Flow asynchrony
The delivered flow does not meet the patient's inspiratory flow demands
Pressure waveform: Look for an upward concavity \(^1\) preceding the end of the mechanical breath
![Pressure waveform example](image)
- Inappropriate selection of ventilation mode (more frequent in volume-controlled modes)
- High inspiratory effort
- In volume-controlled modes:
 - Inappropriate flow settings
- In pressure-controlled modes:
 - Inappropriate P-ramp settings

Notes:
- 'Correct' waveform, in case of good patient-ventilator synchrony
- Patient factors | Ventilator-related factors | Patient-ventilator interface
<table>
<thead>
<tr>
<th>Asynchrony</th>
<th>Description</th>
<th>On the waveform</th>
<th>Waveform example</th>
<th>Common possible causes</th>
</tr>
</thead>
</table>
| Termination asynchronies - during the end of inspiration | Double triggering - Two (or more) mechanical breaths are delivered during one single inspiratory effort | **Flow** waveform: Look for two assisted breaths without expiration between them or with an expiration interval of less than half of the mean inspiratory time (often visually displayed as a waveform with two inspiratory peaks) | ![Waveform](image) | - Cycling criteria (ETS) set too high
- Pressure support too low
- P-ramp too short
- Flow starvation
- High respiratory drive
- Time constant too short

Double triggering can be an effect of and/or promoted by reverse triggering or early cycling.

| Early cycling | The duration of the mechanical breath is shorter than the duration of the patient’s inspiratory effort | **Flow** waveform: Look for a small bump 1 at the beginning of expiration (after peak expiratory flow) followed by an abrupt initial reversal in the expiratory flow 2 | ![Waveform](image) | - In pressure support ventilation:
 - Cycling criteria (ETS) set too high
 - Low levels of ventilator pressure support
 - Time constant too short
- In time-cycled ventilation:
 - Short inspiratory time

| Delayed cycling | The duration of the mechanical breath is longer than the duration of the patient’s inspiratory effort | **Flow** waveform: Look for a change in the slope of the inspiratory flow: a fast decrease 1 followed by an exponential (less steep) decline 2 | ![Waveform](image) | - In pressure support ventilation:
 - Cycling criteria (ETS) set too low
 - Pressure support too high
 - P-ramp too long
- In pressure control ventilation:
 - Cycling criteria (ETS) set too low
 - Inspiratory time too long
- In volume control ventilation:
 - Low flow
 - Long inspiratory time
 - High tidal volume

References