Patient-ventilator asynchrony reference card

<table>
<thead>
<tr>
<th>Asynchrony</th>
<th>Description</th>
<th>On the waveform</th>
<th>Waveform example</th>
<th>Common possible causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger asynchronies - during the beginning of inspiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed triggering</td>
<td>The time interval between the patient’s inspiratory effort and the delivery of a mechanical breath is increased</td>
<td>Flow waveform: look for a longer-than-normal time interval between the positive deflection in flow 1 and the delivery of ventilatory support 2</td>
<td></td>
<td>Trigger threshold set too high
Ventilator pneumatics
Presence of AutoPEEP
Low respiratory drive
Weak inspiratory effort</td>
</tr>
<tr>
<td>Ineffective effort</td>
<td>The patient’s inspiratory effort fails to trigger the delivery of a mechanical breath</td>
<td>Flow waveform: look for an abrupt change in the steepness of the waveform 1 (decrease in expiratory flow or increase in inspiratory flow) that is not followed by ventilatory support 2</td>
<td></td>
<td>Trigger threshold set too high
Pressure support too high
Set frequency and/or inspiratory time too high (in controlled modes)
Tidal volume set too high
Presence of AutoPEEP
Low respiratory drive
Weak inspiratory effort
Sedation</td>
</tr>
<tr>
<td>Auto triggering</td>
<td>A mechanical breath delivered without an inspiratory effort</td>
<td>Pressure waveform: look for a delivered mechanical breath showing no drop in airway pressure 1 at the beginning of the inspiratory phase</td>
<td></td>
<td>Inspiratory trigger sensitivity set too high
Air leaks in the endotracheal tube cuff, ventilator circuit or chest tube
Flow oscillations (water or secretion in the circuit, cardiac oscillations)</td>
</tr>
<tr>
<td>Flow asynchronies - during the gas delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow asynchrony</td>
<td>The delivered flow does not meet the patient’s inspiratory flow demands</td>
<td>Pressure waveform: look for an upward concavity 1 preceding the end of the mechanical breath</td>
<td></td>
<td>Inappropriate selection of ventilation mode (more frequent in volume-controlled modes)
High inspiratory effort
In volume-controlled modes: Inappropriate flow settings
In pressure-controlled modes: Inappropriate P-ramp settings</td>
</tr>
<tr>
<td>Asynchrony</td>
<td>Description</td>
<td>On the waveform</td>
<td>Waveform example</td>
<td>Common possible causes</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Termination asynchronies - during the end of inspiration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Double triggering | Two (or more) mechanical breaths are delivered during one single inspiratory effort | **Flow** waveform: look for two assisted breaths without expiration between them or with an expiration interval of less than half of the mean inspiratory time (often visually displayed as a waveform with two inspiratory peaks) | ![Flow waveform example](image1) | - Cycling criteria (ETS) set too high
- Pressure support too low
- P-ramp too short
- Flow starvation
- High respiratory drive
- Time constant too short

Double triggering can be an effect of and/or promoted by reverse triggering or early cycling |
| Early cycling | The duration of the mechanical breath is shorter than the duration of the patient’s inspiratory effort | **Flow** waveform: look for a small bump at the beginning of expiration (after peak expiratory flow) followed by an abrupt initial reversal in the expiratory flow | ![Flow waveform example](image2) | - In pressure support ventilation:
 - Cycling criteria (ETS) set too high
 - Low levels of ventilator pressure support
 - Time constant too short

In time-cycled ventilation:
- Short inspiratory time setting |
| Delayed cycling | The duration of the mechanical breath is longer than the duration of the patient’s inspiratory effort | **Flow** waveform: look for a change in the slope of the inspiratory flow: a fast decrease followed by an exponential (less steep) decline | ![Flow waveform example](image3) | - In pressure support ventilation:
 - Cycling criteria (ETS) set too low
 - Pressure support too high
 - P-ramp too long

In pressure control ventilation:
- Cycling criteria (ETS) set too low
- Inspiratory time too long

In volume control ventilation:
- Low flow
- High inspiratory time
- High tidal volume |

References: