© 2022 Hamilton Medical AG. All rights reserved. Printed in Switzerland.

No part of this publication may be reproduced, stored in a database or retrieval system, or transmitted in any form or by any means, electronic, mechanical, or by photocopying, recording, or otherwise, without prior written permission of Hamilton Medical AG.

This document may be revised, replaced, or made obsolete by other documents by Hamilton Medical AG at any time and without notice. Ensure that you have the most current applicable version of this document; if in doubt, contact the technical support department of Hamilton Medical AG, Switzerland. While the information set forth herein is believed to be accurate, it is not a substitute for the exercise of professional judgment.

Nothing in this document shall limit or restrict in any way Hamilton Medical AG’s right to revise or otherwise change or modify the equipment (including its software) described herein, without notice. In the absence of an express, written agreement to the contrary, Hamilton Medical AG has no obligation to furnish any such revisions, changes, or modifications to the owner or user of the equipment (including software) described herein.

The equipment must be operated, serviced, or upgraded only by trained professionals. Hamilton Medical AG’s sole responsibility with respect to the equipment and its use is as stated in the limited warranty provided in the device Operator’s Manual.

Hamilton Medical AG shall not be liable for any loss, cost, expense, inconvenience, or damage that may arise out of misuse of the product, or if non-Hamilton Medical AG parts were used when replacing parts, or if serial numbers were amended, deleted, or removed.

If returning parts to Hamilton Medical AG, be sure to use the standard Hamilton Medical returned goods authorization (RGA) procedure. Disposal of parts shall follow all local, state, and federal regulation with respect to environmental protection.

Hamilton Medical AG will make available, on request, circuit diagrams, component parts lists, descriptions, calibration instructions, or other information that will assist appropriately trained personnel to repair those parts of the equipment designated by Hamilton Medical AG to be repairable.

For all proprietary and third-party trademarks used by Hamilton Medical AG, see www.hamilton-medical.com/trademarks.

Manufacturer
Hamilton Medical AG
Via Crusch 8, CH-7402 Bonaduz
Switzerland
Phone: (+41) 58 610 10 20
info@hamilton-medical.com
www.hamilton-medical.com

Distributor in USA
Hamilton Medical, Inc.
4665 Aircenter Circle
Reno, NV 89502
Phone: (775) 858-3200
Toll-free: (800) 426-6331
info@hamiltonmedical.com
<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Safety information</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>22</td>
</tr>
<tr>
<td>1.2</td>
<td>Electromagnetic susceptibility</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Fire and other hazards</td>
<td>23</td>
</tr>
<tr>
<td>1.4</td>
<td>General operation and setup</td>
<td>23</td>
</tr>
<tr>
<td>1.4.1</td>
<td>General operation and setup</td>
<td>23</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Electrical: power and batteries</td>
<td>25</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Gas supply</td>
<td>25</td>
</tr>
<tr>
<td>1.4.4</td>
<td>USB ports</td>
<td>26</td>
</tr>
<tr>
<td>1.5</td>
<td>Setting up for ventilation</td>
<td>27</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Patient breathing circuits, components, and accessories</td>
<td>27</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Preoperational check and tests</td>
<td>28</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Humidifier</td>
<td>28</td>
</tr>
<tr>
<td>1.5.4</td>
<td>CO2 sensor setup and operation</td>
<td>29</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Nebulization</td>
<td>30</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Speaking valve</td>
<td>31</td>
</tr>
<tr>
<td>1.6</td>
<td>Ventilating the patient</td>
<td>31</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Specifying patient settings</td>
<td>31</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Neonatal ventilation</td>
<td>31</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Apnea backup</td>
<td>32</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Noninvasive ventilation</td>
<td>33</td>
</tr>
<tr>
<td>1.7</td>
<td>Monitoring and alarms</td>
<td>33</td>
</tr>
<tr>
<td>1.8</td>
<td>Using the trolley</td>
<td>34</td>
</tr>
<tr>
<td>1.9</td>
<td>Maintenance</td>
<td>34</td>
</tr>
<tr>
<td>1.9.1</td>
<td>General maintenance, cleaning, and disinfection</td>
<td>34</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Preventive maintenance</td>
<td>35</td>
</tr>
</tbody>
</table>
3.5.2 Working with the expiratory valve set ... 67
3.5.3 Selecting the breathing circuit components 68
3.5.4 Assembling the patient breathing circuit 69
3.5.5 Positioning the breathing circuit .. 70
3.5.6 Changing breathing circuit components during ventilation 70

3.6 Turning the ventilator on and off ... 71

Chapter 4 Setting up external devices and sensors 73

4.1 Overview ... 74
4.2 Setting up a humidifier ... 74
4.3 Setting up CO2 monitoring ... 75
 - 4.3.1 Mainstream CO2 measurement .. 75
 - 4.3.2 Sidestream CO2 measurement .. 77
4.4 Setting up SpO2 monitoring .. 79
4.5 Enabling sensors ... 79
4.6 Setting up nebulization ... 80
4.7 Setting up a speaking valve .. 81
 - 4.7.1 Activating speaking valve compatibility 81
 - 4.7.2 Connecting a speaking valve to the breathing circuit set 82
 - 4.7.3 Deactivating speaking valve compatibility 82
4.8 Connecting to external devices ... 83

Chapter 5 Specifying ventilation settings .. 85

5.1 Process overview ... 86
5.2 Selecting the patient group ... 86
 - 5.2.1 About Quick setups: preconfigured settings 87
5.3 Entering patient data ... 88
5.4 Performing the preoperational check, tests, and calibrations 88
 - 5.4.1 Performing the preoperational check .. 89
 - 5.4.2 Performing the breathing circuit Leak test 90
 - 5.4.3 Calibrating the adult/pediatric flow sensor 91
5.4.4 Calibrating the O2 sensor... 93
5.4.5 Performing a zero calibration of the CO2 sensor/adapter........... 94
5.4.6 Testing the alarms... 95
5.5 Selecting the ventilation mode.. 96
5.6 Reviewing and adjusting ventilation settings..................................... 97
 5.6.1 About Plimit and related pressure-control settings....................... 98
 5.6.2 About Apnea backup ventilation.. 100
5.7 Setting alarm limits ... 101
 5.7.1 About the Oxygen alarm limits.. 105
5.8 Starting ventilation.. 106
5.9 Stopping ventilation (Standby)... 106
5.10 About the control parameters... 107

Chapter 6 Specifying neonatal settings...113
 6.1 Setting up for neonatal ventilation.. 114
 6.1.1 Setting the patient group and weight.. 114
 6.1.2 Setting up the patient breathing circuit 115
 6.2 Performing the preoperational check, tests, and calibrations 117
 6.2.1 Calibrating the neonatal flow sensor 118
 6.2.2 Calibrating the neonatal breathing circuit (nCPAP and nCPAP-119 PC modes) .. 119
 6.3 Selecting the ventilation mode.. 120
 6.4 Setting the patient weight for ventilation.. 120
 6.5 Alarms for neonatal ventilation... 120
 6.6 O2 enrichment for neonates.. 120

Chapter 7 Ventilation modes..121
 7.1 Overview... 122
 7.1.1 Breath types and timing options... 122
 7.1.2 Ventilation modes.. 122
 7.2 Volume-targeted modes, adaptive pressure control......................... 125
7.2.1 APVcmv / (S)CMV+ mode ... 126
7.2.2 APVsimv / SIMV+ mode ... 127

7.3 Pressure-controlled modes ... 128
7.3.1 PCV+ mode .. 129
7.3.2 PSIMV+ mode .. 130
7.3.3 PSIMV+ mode with PSync .. 131
7.3.4 DuoPAP mode ... 132
7.3.5 APRV mode ... 133
7.3.6 SPONT mode ... 134

7.4 Intelligent Ventilation ... 135
7.4.1 ASV mode ... 135

7.5 Noninvasive modes .. 137
7.5.1 NIV mode ... 138
7.5.2 NIV-ST mode .. 139
7.5.3 The nCPAP modes .. 140

7.6 Special conditions ... 143
7.6.1 Sensor Failure mode .. 143
7.6.2 Safety ventilation ... 143
7.6.3 Ambient state .. 144

7.7 Working with noninvasive modes 145
7.7.1 Required conditions for use 145
7.7.2 Contraindications ... 145
7.7.3 Potential adverse reactions 146
7.7.4 Control settings in noninvasive ventilation 146
7.7.5 Alarms in noninvasive ventilation 146
7.7.6 Monitored parameters in noninvasive ventilation 147
7.7.7 Additional notes about using noninvasive ventilation .. 147
Chapter 9 Responding to alarms ..181
 9.1 Overview ...182
 9.1.1 Alarm limit indicators ..185
 9.1.2 Responding to an alarm ..185
 9.1.3 Temporarily silencing an alarm186
 9.2 About the alarm buffer ..186
 9.2.1 Accessing on-screen troubleshooting help187
 9.3 Adjusting alarm loudness (volume)188
 9.4 Troubleshooting alarms ...188

Chapter 10 Ventilation settings and functions209
 10.1 Overview ..210
 10.2 Accessing settings during ventilation210
 10.2.1 Accessing patient data during ventilation210
 10.2.2 Accessing settings during ventilation211
 10.3 Entering/exiting Standby ..212
 10.4 Oxygen enrichment ...213
 10.4.1 Performing an open-suctioning maneuver213
 10.4.2 About closed-suctioning maneuvers214
 10.5 High flow oxygen therapy ..215
 10.5.1 Working with high flow oxygen therapy215
 10.6 Manual breath ..215
 10.7 Working with a nebulizer ...216
 10.7.1 Working with a pneumatic nebulizer216
 10.8 Working with a speaking valve ..217
 10.8.1 Mode changes that automatically turn off compatibility217
 10.8.2 Speaking valve-related control settings217
 10.8.3 Parameters monitored when compatibility is activated217
 10.8.4 Speaking valve-related alarms218
Chapter 10
10.9 CPR ventilation ... 219
 10.9.1 About the CPR modes and settings .. 219
 10.9.2 Working with CPR ventilation ... 220
 10.9.3 Monitoring and display during CPR ... 221
 10.9.4 CPR-related alarms .. 221
10.10 Locking and unlocking the touch screen ... 221
10.11 Capturing a screenshot ... 222
10.12 Setting display options ... 222
 10.12.1 Setting date and time ... 222
 10.12.2 Day and night display brightness ... 223
10.13 About the Event log ... 224
 10.13.1 Copying event log data ... 225

Chapter 11 Working with external devices .. 227

11.1 Working with the HAMILTON-H900 humidifier ... 228
 11.1.1 Accessing humidifier controls on the ventilator ... 228
 11.1.2 About the humidification modes .. 230
 11.1.3 Changing humidity using temperature controls ... 232
 11.1.4 Entering Standby .. 233
 11.1.5 Turning the humidifier on/off ... 233
 11.1.6 About humidifier-related alarms ... 234
 11.1.7 About humidifier-related parameters .. 237
11.2 Working with smartphones and clinical networks ... 238
 11.2.1 Setting up a Hamilton Connect App account ... 238
 11.2.2 Enabling a connection type ... 239
 11.2.3 Setting up a Bluetooth connection ... 240
 11.2.4 Setting up a Wi-Fi Access Point .. 240
 11.2.5 Setting up a Wireless LAN (Wi-Fi) connection .. 241
 11.2.6 Connecting to a network using Ethernet .. 242
 11.2.7 Disconnecting a paired smartphone ... 242
Chapter 12 Maintenance ... 243
12.1 Overview .. 244
12.2 Cleaning, disinfection, and sterilization 244
12.3 Preventive maintenance .. 248
12.4 Performing maintenance tasks ... 249
 12.4.1 Maintaining the filters .. 249
 12.4.2 Replacing the galvanic O2 sensor 250
 12.4.3 Charging and storing batteries 250
12.5 Repacking and shipping .. 250

Chapter 13 Configuration .. 251
13.1 Overview .. 252
13.2 Accessing Configuration mode ... 252
13.3 Configuring general settings ... 252
 13.3.1 Selecting the default language 252
 13.3.2 Selecting the units of measure 252
 13.3.3 Enabling the communication interface 252
 13.3.4 Setting the minimum alarm loudness (volume) 253
 13.3.5 Setting sensitivity for Check flow sensor for water alarm ... 253
 13.3.6 Setting the maximum available Flow in HiFlowO2 for neonates ... 253
13.4 Selecting mode options .. 253
 13.4.1 Setting breath timing options 254
 13.4.2 Choosing the mode naming convention 254
 13.4.3 Choosing the ASV version .. 254
 13.4.4 Enabling TI max for invasive modes 254
13.5 Configuring MMPs .. 254
13.6 Defining Quick setups .. 255
 13.6.1 Configuring individual setup settings 255
 13.6.2 Selecting a default Quick setup 256
15.12 Technical performance data ... 300
 15.12.1 Accuracy testing .. 306
 15.12.2 Essential performance ... 306
 15.12.3 Estimated oxygen consumption relative to minute volume 307
15.13 Functional description of ventilator system 308
 15.13.1 Gas supply and delivery .. 308
 15.13.2 Gas monitoring with the flow sensor ... 309
 15.13.3 Pneumatic diagram .. 310
15.14 Symbols used on device labels and packaging 311
15.15 Standards and approvals ... 313
15.16 Disposal and year of manufacture ... 315
15.17 Warranty .. 315
 Glossary ... 317
 Index .. 325
HAMILTON-C1 Documentation

<table>
<thead>
<tr>
<th>Document title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s Manual (this guide)</td>
<td>Provides detailed information about the setup and use of the HAMILTON-C1 ventilator.</td>
</tr>
<tr>
<td>Pulse Oximetry Instructions for Use</td>
<td>Provides setup and use information for using SpO2 and related sensors with the ventilator.¹</td>
</tr>
<tr>
<td>Volumetric Capnography User Guide</td>
<td>Provides reference information for CO2 capnography.¹</td>
</tr>
<tr>
<td>HAMILTON-H900 Instructions for Use</td>
<td>Provides specifications, and setup and use information for the HAMILTON-H900 humidifier.¹</td>
</tr>
<tr>
<td>Hamilton Connect App Instructions for Use</td>
<td>Provides detailed information about the setup and use of the Hamilton Connect App.</td>
</tr>
<tr>
<td>Communication Interface User Guide</td>
<td>Provides an overview of the communication interface, including how to connect the ventilator to external devices for data communication and support for nurse call remote alarms.</td>
</tr>
<tr>
<td>Service Manual</td>
<td>Provides information about installing and setting up the medical equipment, as well as additional technical and servicing information for the ventilator.</td>
</tr>
<tr>
<td>Communication Board User Guide</td>
<td>Provides information about installing and configuring communication boards.</td>
</tr>
<tr>
<td>Hamilton Connect Communication and Configuration Guide</td>
<td>Provides reference information for network connectivity and information about enabling connection types on your device.</td>
</tr>
<tr>
<td>EMC Declarations Guide</td>
<td>Provides emissions and EMC-related safety and use information.</td>
</tr>
</tbody>
</table>

Be sure to read the documentation before using the device or accessories.

¹ If option is installed.
To download the latest version of this manual or other documents, visit the Resource Center website:

A QR code on the ventilator provides a link to the Resource Center website, where you can download this manual and related product documentation. See Section 8.7.

Training

Hamilton Medical offers the Hamilton Medical College, which provides a variety of learning modules free of charge. To register, go to: http://college.hamilton-medical.com

Conventions used in this guide

In this manual:

- Button and tab names are shown in a bold font.
- The notation XX > XX shows the sequence of buttons/tabs to touch to open the associated window.
 For example, the text "Touch System > Settings" means touch the System button, then touch the Settings tab.
- Window names are shown using the sequence of buttons/tabs used to open them.
 For example, "Alarms > Limits 2 window" means the window is accessed by touching the Alarms button, then the Limits 2 tab.
- Software version: The software version for the ventilator is displayed in the System > Info window and should match the version on the title page of this manual.
- A green check mark ✔ or button XXX indicates a selected item or feature.
- The graphics shown in this manual may not exactly match what you see in your environment.
- The term USB drive refers to a passive USB memory device, also known as a USB flash drive or USB memory stick.
- Some figures use callouts in a white circle with a blue border.
 These figures may have an associated legend table, or may provide the legend in the figures title, if a single item. Callouts may be numeric or alphabetic. Callouts are unrelated to any nearby procedures and refer only to the figures themselves and their associated legend.
- Some figures use small dark blue callouts.
 These callouts show the sequence of steps. They are not directly related to the numbering in the text of any associated procedure.
- Not all features or products are available in all markets.
- Product description and order number may differ depending on region.
- Units of measure: Pressure is indicated in cmH2O, length in cm, and temperature in degrees Celsius (°C). The units of measure for pressure and length are configurable.
• All patient-related pressure, volume, and flow measurements are expressed in BTPS (body temperature and pressure saturated).

• Pneumatic-related pressure, volume, and flow measurements are expressed in STPD (standard temperature and pressure dry).

• The term smartphone refers to supported smartphones and other mobile devices.

Safety messages are displayed as follows:

WARNING
Alerts the user to the possibility of injury, death, or other serious adverse reactions associated with the use or misuse of the device.

CAUTION
Alerts the user to the possibility of a problem with the device associated with its use or misuse, such as device malfunction, device failure, damage to the device, or damage to other property.

NOTICE
Emphasizes information of particular importance.

In tables, safety messages are indicated as follows:

⚠️ **WARNING!**

⚠️ **CAUTION!**

ℹ️ **NOTICE!**

Intended use

The HAMILTON-C1 ventilator is intended to provide positive pressure ventilatory support to adults and pediatrics, and optionally infants and neonates.

Intended areas of use:

• Health care facilities

• During transfer of ventilated patients within the hospital

The HAMILTON-C1 ventilator is a medical device intended for use by qualified, trained personnel under the direction of a physician and within the limits of its stated technical specifications.

⚠️ **WARNING**

Federal law restricts this device to sale by or on the order of a physician.
1.1 Overview ... 22
1.2 Electromagnetic susceptibility ... 22
1.3 Fire and other hazards ... 23
1.4 General operation and setup ... 23
1.5 Setting up for ventilation .. 27
1.6 Ventilating the patient ... 31
1.7 Monitoring and alarms ... 33
1.8 Using the trolley ... 34
1.9 Maintenance .. 34
1.10 Service and testing ... 36
1.1 Overview

This chapter provides safety information related to setting up and operating the ventilator, as well as providing service.

Be sure to review this Operator’s Manual before using the ventilator and any accessories.

Be sure to read the Instructions for Use provided with any devices and accessories used with the ventilator before use.

Carefully review all sections of this safety chapter before setting up the ventilator and accessories, and ventilating the patient.

If you have questions about any of the information in this manual, contact your Hamilton Medical representative or technical service personnel.

1.2 Electromagnetic susceptibility

WARNING

- **MR UNSAFE.** Keep away from magnetic resonance imaging (MRI) equipment. The ventilator poses unacceptable risks to the patient, medical staff, or other persons within the MR environment.
- Correct function of the device may be impaired by the operation of high-frequency surgical equipment, microwaves, shortwaves, or strong magnetic fields in close proximity.
- Follow precautions for electrostatic discharge (ESD) and electromagnetic interference (EMI) to and from the ventilator and any connected devices and accessories.
- Use of accessories, transducers, and cables other than those specified by Hamilton Medical can result in increased electromagnetic emissions or decreased electromagnetic immunity of this equipment, and may result in improper operation.
- Ensure a minimum of 15 cm (6 in) distance between the HAMILTON-C1 and any 134.2 kHz RFID equipment.
- Portable RF communications equipment, including peripherals such as antenna cables and external antennas, should be placed no closer than 30 cm (12 in) to any part of the ventilator, including any specified cables. Otherwise, degradation of the performance of this equipment can occur.
- Certain RF transmitting devices (cellular phones, RFID equipment, walkie-talkies, cordless phones, paging transmitters, etc.) emit radio frequencies that could affect ventilator performance if operated too closely to the ventilator. Be aware of possible radio frequency interference if portable devices are operated in close proximity to the ventilator.
- The emissions characteristics of this equipment make it suitable for use in industrial areas and hospitals (CISPR 11, class A). If it is used in a residential environment (for which CISPR 11, class B is normally required) this equipment might not offer adequate protection to radio-frequency communication services. The user might need to take mitigation measures, such as relocating or reorienting the equipment.

The HAMILTON-C1 complies with the IEC 60601-1-2 EMC (Electromagnetic Compatibility) Collateral Standard.
The ventilator requires special precautions regarding electromagnetic compatibility (EMC). It must be installed and put into service according to the EMC information provided in the ventilator EMC Declarations (PN 10078283).

When using the optional integration with the HAMILTON-H900 humidifier, refer to the EMC Declarations for the device (PN 624539).

Portable and mobile RF communications equipment can affect the ventilator and all medical electrical equipment.

1.3 Fire and other hazards

WARNING

- It is *not* permitted to use any of the equipment with flammable gases or anesthetic agents, or in insufficiently ventilated areas. Danger of fire!
- It is *not* permitted to use the ventilator with helium or mixtures of helium. Such use might cause the ventilator to *not* function correctly, causing patient death or serious deterioration of health.
- Do *not* use the ventilator with any equipment or high-pressure gas hoses that are worn or contaminated with oil or grease.
- Highly compressed oxygen together with flammable sources can lead to spontaneous explosions.
- In case of fire, immediately secure the patient’s ventilatory needs, turn off the ventilator, and disconnect it from its gas and electrical sources.
- Do *not* use if primary power source cables are damaged.
- The HAMILTON-C1 can be used in an oxygen-enriched environment. To reduce the risk of fire, use only breathing circuits intended for use in oxygen-enriched environments. Do *not* use antistatic or electrically conductive tubing.

1.4 General operation and setup

This section provides the following safety information:

- General operation and setup
- Electrical: power and batteries
- Gas supply
- USB ports

1.4.1 General operation and setup

WARNING

- Only use the ventilator and its components and accessories according to the intended use and as described in the associated *Instructions for use*. Any other use might cause the ventilator to *not* function correctly, causing patient death or serious deterioration of health.
- Modifications to the device and any accessories are *not* permitted. Such use might cause the ventilator to *not* function correctly, causing patient death or serious deterioration of health.
- An O2 sensor *must* be installed.
• Do not connect nitric oxide or mixtures of nitric oxide to the Oxygen inlet; it is not permitted to use the ventilator with nitric oxide or mixtures of nitric oxide. Such use might cause the ventilator to not function correctly, causing patient death or serious deterioration of health.

• In case of ventilator failure, the lack of immediate access to appropriate alternative means of ventilation can result in patient death.

• An alternative means of ventilation must be available whenever the ventilator is in use. If a fault is detected in the ventilator or its life-support functions are in doubt, disconnect the ventilator from the patient and immediately start ventilation with an alternate device (for example, a resuscitation bag), using PEEP and/or increased oxygen concentration when appropriate. The ventilator must be removed from clinical use and serviced by a Hamilton Medical authorized service engineer.

• Use only parts and accessories specified in Chapter 14 and in the product e-catalog, or that are specified as being compatible with this ventilator. Doing so ensures proper ventilation operation, avoids degraded performance, and keeps your warranty in force.

• The use of this equipment is restricted to one patient at a time.

• Do not connect any component or device to the exhaust port of the expiratory valve unless authorized by Hamilton Medical.

• The ventilator must not be used in a hyperbaric chamber. Such use might cause the ventilator to not function correctly, causing patient death or serious deterioration of health.

• If there is damage to any part of the ventilator, do not use the device. Technical service is required.

• Do not simultaneously touch conductive components (for example, the USB port) or conductive parts of the ventilator enclosure and the patient.

• Additional equipment connected to medical electrical equipment must comply with the respective IEC or ISO standards. All configurations must comply with the requirements for medical electrical systems, IEC 60601-1, clause 16.

• Anybody connecting additional equipment to medical electrical equipment configures a medical system and is responsible for ensuring that the system complies with the requirements for medical electrical systems. Local laws take priority over the above-specified requirements.

⚠️ CAUTION ⚠️

• Do NOT cover the ventilator or position it in such a way that the operation or performance of the ventilator is adversely affected.

• To prevent possible patient injury, do NOT block the holes at the back and side of the ventilator. These holes are vents for the fresh air intake and the cooling fan.
1.4.2 Electrical: power and batteries

NOTICE

- Any incident with the device leading to serious patient injury, death, or a potential threat to public health must be reported to the manufacturer and the relevant authorities.
- The ventilator provides automatic barometric pressure compensation.
- Due to the ventilator’s base flow, the exhaust gas output is larger than the patient’s actual exhaled volume.

WARNING

- To ensure grounding reliability, use a special hospital-grade receptacle.
- Ventilation stops if the battery is discharged or removed and no external power supply is connected.
- The HAMILTON-C1 does not require protective earth grounding, because it is a class II device, as classified according to IEC 60601-1.
- Only authorized personnel may check and replace batteries.
- Check the battery charge level before ventilating a patient and before unplugging the ventilator for transport or other purposes.
- The battery will not charge if the ambient temperature is above 43°C.

CAUTION

To electrically isolate the ventilator electrical circuits from all poles of the primary power supply simultaneously, disconnect the power plug.

NOTICE

- Set up the ventilator in a location where the primary power supply is accessible.
- Only authorized service personnel may replace the power cable.
- Battery life indications are approximate. The actual battery life depends on ventilator settings, battery age, and level of battery charge. To ensure maximum battery life, maintain a full charge and minimize the number of complete discharges.
- After power has been interrupted, the device stores the last settings, including any specified alarm limits. Upon reconnection with the power supply, the device resumes ventilation with these stored settings.

1.4.3 Gas supply

WARNING

You must remove the low-pressure oxygen adapter before using high-pressure oxygen.

CAUTION

Always check the status of the oxygen cylinders or other supply before using the ventilator during transport.

NOTICE

- To prevent damage to the ventilator, connect only clean, dry medical grade oxygen.
- When the ventilator is not in use, disconnect all gases.
1.4.3.1 Low-pressure oxygen supply

CAUTION

- **To reduce the risk of fire:**
 – Do NOT use a low-pressure oxygen source that delivers a flow greater than 15 l/min.
 – Ensure adequate ventilation at the rear of the ventilator.
 – Turn off the oxygen source when the ventilator is not in operation.
- **To prevent possible patient injury** when using the ventilator with an oxygen concentrator, do not use a humidifier. Any humidifier system supplied with the concentrator must be removed before using the ventilator.
- **The Oxygen control** on the ventilator is not active when low-pressure oxygen is used. It is the operator’s responsibility to control the oxygen setting.
- **To prevent possible patient injury**, use low-pressure oxygen only in cases where the low-pressure source can provide an adequate level of oxygenation.
- **To prevent possible patient injury**, ensure that an emergency backup oxygen supply (for example, a cylinder) is available in case the low-pressure oxygen source fails.
- **To calibrate the O2 sensor**, disconnect all O2 supplies. Calibration is performed at a concentration of 21%.
- **To protect the oxygen control system**, do not supply both high- and low-pressure oxygen to the ventilator simultaneously.

NOTICE

- Only use low-pressure hoses that comply with EN ISO 5359 to connect the device to the oxygen supply.
- Before starting ventilation, ensure that the selected gas source type, HPO or LPO\(^2\), matches the connected gas source.

1.4.4 USB ports

WARNING

- During transfer of a ventilated patient, to prevent water intake, the ventilator USB port and RJ-45 Ethernet connector must be covered.
- Do not use the USB port to make a wireless connection of any kind.

NOTICE

- Before using the USB port, touch the ventilator to discharge any static electricity.
- You can only connect one item to the USB port at a time.
- The USB drive must be USB 1.1 compatible.
- If you remove the USB drive before files are completely transferred, you must turn the ventilator off and on again to reset the USB port.
- Only the following components are allowed to be connected to the USB port:
 – USB passive memory drive (referred to as a *USB drive*)
 – Hamilton Medical-approved accessories; see your authorized representative

\(^2\) Not available in all markets.
1.5 Setting up for ventilation

This section provides safety information for the following:

- Patient breathing circuits, components, and accessories
- Performing preoperational check and testing
- Humidifier
- CO2 monitoring setup and operation
- Nebulization
- Speaking valve
- SpO2 monitoring setup and operation

See the Pulse Oximetry Instructions for Use.

1.5.1 Patient breathing circuits, components, and accessories

In addition to the information provided in this section, carefully review the information in Sections 1.3 and 1.4.

WARNING

- To prevent patient or ventilator contamination, always use a bacteria filter or HMEF between the patient and the inspiratory port. If no bacteria filter is used, the exhaled gas can contaminate the ventilator.
- Ensure that all of the components of the breathing circuit set, including but not limited to flow sensor, humidifier, and other accessories, match the associated intended use for the target patient group.

- Adding attachments or other components/assemblies to a breathing system can change the pressure gradient across the ventilator, which can adversely affect ventilator performance. Such use might cause the ventilator to not function correctly, causing patient death or serious deterioration of health.
- Make sure a HEPA filter is installed by the air intake. See Section 12.4.1.
- For each new patient, always use a new or reprocessed breathing circuit to avoid cross contamination.
- During ventilation, regularly check the breathing circuit filter for increased resistance and blockage.

NOTICE

- Any bacteria filter, HMEF, or additional accessories in the expiratory limb may substantially increase flow resistance and impair ventilation.
- When adding components to the Hamilton Medical breathing circuit configurations, do not exceed the inspiratory and expiratory resistance values of the ventilator breathing system as specified in Section 15.11, as required by ISO 80601-2-12.
- Pressure and volume measurement accuracy may be affected by using a breathing circuit with high resistance. Accuracy was tested with the HAMILTON-C1 using the breathing circuits PN 260144 for adults, PN 260189 for pediatrics, and PN 151969 for neonates. Accuracy was tested with the HAMILTON-C1 neo using the breathing circuit PN 151969 for neonates.
- The flow sensor tubes must be secured with the included clamp.
1.5.2 Preoperational check and tests

CAUTION
- To prevent possible patient injury, disconnect the patient from the ventilator before running the preoperational tests, and use another source of ventilatory support.
- To ensure the ventilator’s safe operation, always run the preoperational check before using the ventilator on a patient.
- Do NOT use the ventilator until necessary repairs are completed and all preoperational tests have passed.

NOTICE
- To ensure that all breathing circuit connections are leak-tight, perform the Leak test every time you connect a circuit or change a circuit part.
- If there is a mismatch between the selected patient group and the type of flow sensor connected, the calibration fails. Ensure you are using the correct flow sensor for the patient.

1.5.3 Humidifier

WARNING
- Before using a humidifier, review the Instructions for use as well as the Instructions for use provided with its accessories.
- To prevent possible patient injury and equipment damage, do not turn the humidifier on until the gas flow has started and is regulated. Turn the humidifier off before stopping gas flow.
- Adding attachments or other components/assemblies to a connected humidifier can change the pressure gradient across the ventilator, which can adversely affect ventilator performance. Such use might cause the ventilator to not function correctly, causing patient death or serious deterioration of health.
- Regularly check the water traps and the breathing circuit limbs for water accumulation. Empty as required.

CAUTION

When using active humidification, prevent water accumulation in the flow sensor by ensuring that the flow sensor is positioned at a ≥ 45° angle relative to the floor. Excess water can affect the flow sensor measurements and lead to inaccurate volume delivery, potentially resulting in hypoventilation.

Figure 1-1. Position flow sensor at an angle ≥ 45° relative to the floor
1.5.4 CO2 sensor setup and operation

WARNING

- Monitor the CO2 waveform (capnogram) on the ventilator display. If it appears abnormal, check the patient, settings, and the breathing circuit components, including the CO2 sensor sampling line. Adjust and replace components as appropriate.
- If the capnogram appears abnormal, inspect the CO2 airway adapter and replace if needed.
- Elevated baseline can be caused by sensor problems or by the patient’s condition.
- Do not use any CO2 sensor/adapter if it appears to be damaged or if it fails to operate properly. Refer servicing to Hamilton Medical authorized personnel.
- In NIV and neonatal ventilation with uncuffed tubes, leaks may influence the capnogram and the measured values.
- Always connect all components securely and check for leaks according to standard clinical procedures.
- Positioning of tubes and cables:
 – Do not position the cables or tubing in any manner that may cause patient entanglement or strangulation.
 – Support the tubing to avoid stress on the ET tube.
 – Do not apply excessive tension to any cable or tubing.
- During use, a system leak, such as that caused by an uncuffed ET tube or damaged airway adapter, may significantly affect sensor readings, including flow, volume, pressure, and other respiratory parameters.
- Leakages in the breathing or sampling system may cause the displayed CO2 values to be significantly under-reported (too low).
- Keep all cleaning agents away from the CO2 sensor electrical connections.
- For the CO2 sensor/adapter, use only cleaning and disinfection agents that are recommended in Table 12-4.
- Periodically check the sensor and tubing for excessive moisture or secretion build-up, and replace if needed. Excessive moisture can affect measurements.
- **LoFlo sidestream CO2 sensor.**
 Do not use with patients who cannot tolerate the removal of 50 ml ±10 ml/min from their total minute volume. In adaptive modes (such as ASV, APVcmv, and APVsimv), the removal is fully compensated.
- **LoFlo sidestream CO2 sensor.**
 Use of devices containing PVC plasticized with DEHP should be limited to the amount of time treatment is medically necessary, especially for neonates and pregnant or nursing mothers.

CAUTION

- All devices are NOT protected against reanimation with a defibrillator. Disconnect the CO2 sensor before using a defibrillator on the patient.
- Always use the correct CO2 airway adapter for the patient group. In adult patients, smaller geometrics increase airway resistance and induce low tidal volumes and AutoPEEP. In neonatal patients, larger geometrics impede effective CO2 removal and add dead space.
• Do NOT place the CO2 sensor directly on the patient’s skin. It can burn the skin as the sensor may reach a temperature of 46°C (115°F).
• Do NOT use the CO2 components when they are wet or have exterior condensation. Condensation may harm the patient.
• Use during nebulization may influence the CO2 measurements. In addition, the medication can contaminate the sensor windows, causing the sensor to fail prematurely.
• LoFlo sidestream CO2 sensor. Remove the sampling kit sample cell from the module when not in use.
• LoFlo sidestream CO2 sensor. Do NOT stick finger into the sample cell receptacle.

NOTICE
• Position airway adapters with windows in a vertical, not a horizontal, position. This helps keep patient secretions from pooling on the windows. If pooling occurs, remove the adapter, rinse with sterile water, and reconnect.
• Do not combine the neonatal CO2 airway adapter and the adult flow sensor. Doing so can increase resistance, create artifact, or lead to hypoventilation, AutoPEEP, or overinflation.
• Do not place the CO2 sensor/adapter between the ET tube and any connected adapter, as this may allow patient secretions to enter the tubing and block the adapter windows.
• The CO2 sensors and accessories that have contact with the patient are not made with natural rubber latex.

• Nitrous oxide, elevated levels of oxygen, helium, and halogenated hydrocarbons can influence the CO2 measurement.

1.5.5 Nebulization

WARNING
• Nebulization of drugs can cause an occlusion and increased resistance of a connected expiratory filter or heat and moisture exchanger (HMEF). Check the filter frequently for increased resistance or blockage.
• Connect the nebulizer in the inspiratory limb according to your institution’s policy and procedures. Connecting the nebulizer between the flow sensor and the endotracheal tube increases dead space and causes incorrect volume measurements.
• Pneumatic nebulization affects the delivered oxygen concentration.
• Nebulization can affect the accuracy of CO2 measurements.
• The use of a pneumatic nebulizer adds gas to the ventilator breathing system, which can affect the accuracy of volume or flow measurements.

CAUTION
To prevent the expiratory valve from sticking due to nebulized medications, regularly check and clean or replace the expiratory valve membrane and/or the expiratory filter.
1.5.6 Speaking valve

NOTICE

- Pneumatic nebulization is disabled:
 - During neonatal ventilation (if needed, use an Aerogen nebulizer\(^3\))
 - When using HiFlowO2 therapy
 - When using LPO
- Only use approved piezo nebulizers with the HAMILTON-C1.

1.6 Ventilating the patient

This section provides the following safety information:

- Specifying patient settings
- Neonatal ventilation
- Apnea backup
- Noninvasive ventilation

\(^3\) Aerogen nebulization is not supported for patients younger than 28 days old in the USA.
CAUTION

- Make sure the correct type of expiratory valve for your patient is installed:
 - Ensure the Neonatal patient group is selected on the ventilator when using the neonatal expiratory valve. It cannot be used with the Adult/Ped group.
 - You must use a neonatal expiratory valve for neonates.
- To prevent increased CO₂, do NOT use an adult airway adapter for neonates as it will increase dead space.
- To determine appropriate tidal and minute volumes for neonatal patients, you must consider (anatomic) dead space. Artificial airways (for example, Y-piece, flow sensor, ET tube, CO₂ airway adapter) increase the dead space.
- When using active humidification, prevent water accumulation in the flow sensor by ensuring that the flow sensor is positioned at a ≥ 45° angle relative to the floor. Excess water can affect the flow sensor measurements and lead to inaccurate volume delivery, potentially resulting in hypoventilation.

NOTICE

When switching between the Adult/Ped to the Neonatal patient groups, you must calibrate the flow sensor and perform the Leak test.

1.6.2.1 Working with nCPAP modes

NOTICE

- In nCPAP and nCPAP-PC modes, starting O₂ enrichment or changing the Oxygen setting sets the flow to 10 l/min for 60 seconds. The flow then returns to its previous setting.
- The Flow sensor calibration needed alarm may be generated when changing to and from nCPAP modes.
- Apnea backup, trigger detection, disconnection detection, and volume measurements are not available in nCPAP modes.

1.6.3 Apnea backup

CAUTION

We recommend you enable Apnea backup ventilation whenever a mode that allows spontaneous breathing is selected. Apnea backup is enabled by default.
1.6.4 Noninvasive ventilation

NOTICE
- As a precaution, while noninvasive ventilation is in use, you must be prepared to intubate the patient and start invasive ventilation at any time.
- The use of a mask can increase dead space. Always comply with the mask manufacturer’s instructions when using noninvasive ventilation.
- The Inspiratory volume limitation alarm is inactive in noninvasive modes.

1.7 Monitoring and alarms

CAUTION
- To prevent possible patient injury, make sure the alarm limits are appropriately set before you place the patient on the ventilator.
- The HAMILTON-C1 oxygen monitoring function can be disabled. Ensure that an alternative means of oxygen monitoring is always available and enabled to reduce the possibility of patient death or serious deterioration of health.
- To ensure that oxygen monitoring is always fully functional, replace an exhausted or missing O2 sensor as soon as possible or use an external monitor that complies with ISO 80601-2-55.

NOTICE
- The HAMILTON-C1 is not intended to be a comprehensive vital sign monitor for patients on life-support equipment. Patients on life-support equipment should be appropriately monitored by qualified medical personnel and suitable monitoring devices.
- Do not pause the audible alarm when leaving the patient unattended.
- The factory default alarm limit settings are set in line with the selected patient group, allowing for unattended monitoring. These settings, however, can never replace individual review of the patient and adjustment of alarm limits based on their condition.
- The use of an alarm monitoring system does not give absolute assurance of warning for every type of issue that may arise with the ventilator.
- Alarm messages may not pinpoint a problem exactly; the exercise of clinical judgment is necessary.
- It is recommended that additional independent monitoring devices, including pulse oximeters measuring SpO2 and CO2 sensors, be used during mechanical ventilation. The operator of the ventilator must still maintain full responsibility for proper ventilation and patient safety in all situations.
- Alarm conditions, including technical faults/events, that are not directly related to a physiological sensor (CO2, SpO2) do not affect the function of any attached physiological sensor, including the values of any associated CO2, SpO2, and pulse-rate measurements. Real-time waveforms on the ventilator provide a method for assessing the displayed numeric values.
- The alarm limits Auto function is not available during neonatal ventilation.
1.8 Using the trolley

WARNING

- To prevent possible personal injury and equipment damage, including tipping:
 - Lock the trolley’s wheels when parking the ventilator.
 - Take care when crossing thresholds.
- To prevent accidental extubation, check the patient tubing support arm joints and secure as necessary.

1.9 Maintenance

This section provides the following safety information:

- General maintenance, cleaning, and disinfection
- Preventive maintenance
- O2 sensor

1.9.1 General maintenance, cleaning, and disinfection

WARNING

- Reprocessing of Hamilton Medical single-use products can affect the product properties and may cause injury to the patient. For example, a change to the surface structure during reprocessing may lead to a change in the tear strength or cause actual cracking. Furthermore, an altered surface structure may result in a microbial aggregation of spores, allergens, and pyrogens, for example, or cause an increase in the number of particles released as a result of chemical changes in the material properties.
- To reduce the risk of cross-contamination, regularly clean and replace the fan filter. For details, see Table 12-5 and Section 12.4.1.
- To prevent patient exposure to sterilizing agents and to prevent premature deterioration of parts, sterilize parts using only the techniques recommended in Chapter 12 and in any associated *Reprocessing guide* or *Instructions for use* provided with each part.
- Hamilton Medical does *not* assume any liability for the proper functioning of single-use items if they are reprocessed and reused by the user.
- Always use caution when handling bacteria filters to minimize the risk of bacterial contamination or physical damage. Dispose of used filters immediately after use. Follow your hospital procedures for disposal.
- Follow the cleaning, disinfection, and sterilization procedures for each component as described in this guide and in the cleaning agent manufacturer’s *Instructions for use*.
- Always disconnect the device and any accessories, including CO2 sensor/adapter, from electrical power before cleaning and disinfection to reduce the risk of electric shock.
1.9.2 Preventive maintenance

NOTICE

For specific information on cleaning, disinfecting, and sterilizing autoclavable (reusable) accessories and components, refer to the appropriate Reprocessing guide and Instructions for use provided with each part.

CAUTION

- Do NOT sterilize or immerse the CO2 sensor in liquids.
- Do NOT attempt to sterilize the interior components of the ventilator.
- Do NOT attempt to sterilize the entire device with ETO gas.
- Incorrect concentrations or residence times of sterilization agents may lead to bacterial resistance.
- To prevent premature deterioration of parts, make sure the disinfecting chemical is compatible with the part material. Use only EPA-registered/approved cleaning and disinfection solutions, as approved by your institution’s protocol, after each patient use, according to the cleaning agent manufacturer’s recommendations.
- Intrusion of fluids, or immersing parts in fluids, will damage the device.
- Do NOT pour fluids onto the device surfaces.
- Do NOT use abrasives materials (for example, steel wool or silver polish), hard brushes, pointed instruments, or rough materials on surfaces.
- Thoroughly rinse all patient- or airway-contact components to ensure removal of residual cleaning/disinfection agents.
- Cleaning and disinfection agent residues can cause blemishes or fine cracks, especially on parts exposed to elevated temperatures during sterilization.

NOTICE

- Dispose of all parts removed from the device according to your institution’s protocols. Comply with all local, state, and federal regulations with respect to environmental protection, especially when disposing of the electronic device or parts of it.
- We recommend that you document all maintenance procedures.
- It is not allowed to perform service or maintenance on the device while a patient is connected.
- If no bacteria (inspiratory) filter is used, the device must be considered contaminated and must be serviced.
1.9.3 O2 sensor

CAUTION

If an O2 sensor is not installed, use an external oxygen monitor complying with ISO 80601-2-55 to verify that the set oxygen concentration is being delivered to the patient. Be sure to cover the O2 sensor port with the provided cover.

NOTICE

- Replace the O2 sensor with a genuine Hamilton Medical O2 sensor only; otherwise, oxygen measurement will not function and permanent oxygen-related alarms may be generated.
- To prevent leakage within the ventilator, make sure an O2 sensor is installed at all times, even if you use an external monitor or disable oxygen monitoring.
- Keep the oxygen sampling site free of other gases to avoid affecting oxygen sampling.
- The paramagnetic O2 sensor can only be calibrated while the ventilator is in Standby; calibration during ventilation is not possible.

1.10 Service and testing

- To ensure proper servicing and to prevent possible physical injury, only Hamilton Medical authorized service personnel may service the ventilator using information provided in the ventilator Service Manual. In addition, all accessories and devices must only be serviced by Hamilton Medical authorized service personnel.
- The manufacturer can only be responsible for the safety, reliability, and performance of the ventilator if all of the following requirements are met:
 - Appropriately trained personnel carry out assembly operations, extensions, readjustments, modifications, maintenance, or repairs.
 - The electrical installation of the relevant room complies with the appropriate requirements.
 - The ventilator system is used in accordance with the ventilator Operator’s Manual.
 - Do not attempt service procedures other than those specified in the ventilator Service Manual.
- Any attempt to modify the ventilator hardware or software without the express written approval of Hamilton Medical automatically voids all warranties and liabilities.
2 System overview

2.1 Overview .. 38
2.2 Physical descriptions ... 41
2.3 Navigating the windows and controls .. 52
2.1 Overview

The HAMILTON-C1 ventilator system comprises the following main components:

- Ergonomic design featuring integrated monitor with touch screen display and integrated alarm lamp
- Ventilation unit for gas mixing and control, and patient breathing circuit for gas delivery and exchange
- Oxygen monitoring using a galvanic sensor
- Optional communication with smartphones and integration with hospital network
- Optional connections to a humidifier, nebulizer, SpO2 and CO2 sensors, and external data interfaces
- Trolley or shelf mount

The ventilator system offers the following main features:

- **Monitoring**: Real-time waveforms, numerical monitoring, trends, loops, and Intelligent panels showing the patient’s real-time breathing status, ventilator dependence, and targets, CO2 and SpO2 measurements (when enabled)
- Alarms and on-screen troubleshooting help
- Configurable startup settings for each patient group
- Remote access to the HAMILTON-H900 humidifier controls and status
- Support for pneumatic or Aerogen nebulization
- Remote viewing, reporting, and file transfer using the Hamilton Connect App on supported smartphones and mobile devices

The HAMILTON-C1 neo is a HAMILTON-C1 ventilator on which the neo option is enabled. The HAMILTON-C1 with the neo option is dedicated exclusively to neonatal ventilation; only modes and features applicable to neonatal ventilation are supported.

2.1.1 Standard features and options

The ventilator offers a robust set of standard equipment and features, as well as optional modes and features for the supported patient groups.

Table 2-1 lists the standard software configuration and options.

Table 2-2 lists the standard equipment (hardware) and options.
Table 2-1. Standard software configuration and options

<table>
<thead>
<tr>
<th>Function</th>
<th>Patient group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult/Ped</td>
<td>Neonatal<sup>5.6</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient groups</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent ventilation mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASV<sup>®</sup></td>
<td>X</td>
<td>--</td>
</tr>
<tr>
<td>Volume-targeted, pressure-controlled modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APVcmv / (S)CMV+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>APVsimv / SIMV+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pressure-controlled modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuoPAP, APRV</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>PCV+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PSIMV+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SPONT</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Noninvasive modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIV, NIV-ST</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>nCPAP, nCPAP-PC</td>
<td>--</td>
<td>O</td>
</tr>
<tr>
<td>Other functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow trigger</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>On-screen help</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CPR ventilation</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

When the C1 neo option is activated, only the Neonatal patient group, associated modes, and features are supported.

Standard: X Option: O Not applicable: --

⁵ Applies only to devices with serial number > 6000.
⁶ Not available in all markets.
System overview

Table 2-2. Standard equipment (hardware) configuration and options

<table>
<thead>
<tr>
<th>Function</th>
<th>Adult/Ped</th>
<th>Neonatal<sup>5,6</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Suctioning tool</td>
<td>X</td>
<td>--</td>
</tr>
<tr>
<td>HiFlowO2</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Speak valve compatibility</td>
<td>O</td>
<td>--</td>
</tr>
<tr>
<td>Hamilton Connect Module</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Trends/Loops</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>HAMILTON-C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trolley or shelf mount solution</td>
<td>O</td>
</tr>
<tr>
<td>Communication board:</td>
<td>O</td>
</tr>
<tr>
<td>CO2/Nurse Call/COM, CO2/SpO2/COM<sup>7</sup>, or CO2/SpO2/Humidifier & COM<sup>1</sup></td>
<td>O</td>
</tr>
<tr>
<td>USB port</td>
<td>X</td>
</tr>
<tr>
<td>RJ-45 Ethernet port<sup>8</sup></td>
<td>X</td>
</tr>
<tr>
<td>Communication protocols:</td>
<td>O</td>
</tr>
<tr>
<td>Hamilton, Hamilton P2, GALILEO compatible, DrägerTestProtocol, Philips VueLink Open, Hamilton Block protocol</td>
<td>O</td>
</tr>
<tr>
<td>HAMILTON-H900 humidifier integration</td>
<td>O</td>
</tr>
</tbody>
</table>

⁷ Applies only to devices with serial number > 6000.

⁸ RS-232 connection over the COM¹ port is only available when using the communication Y-cable (PN 10077038).

⁹ Only available for use if the Hamilton Connect Module is activated.
2.2 Physical descriptions

This section provides an overview of the ventilator, breathing circuit sets, and trolley.

Figure 2-1. HAMILTON-C1 with accessories

1 Support arm and infusion arm
2 Display and controls
3 Breathing circuit connections
4 Breathing circuit
5 Humidifier
6 Trolley
2.2.1 About the ventilator

Figure 2-2. Front view, HAMILTON-C1/C1 neo ventilators

1. Alarm lamp
2. Touch screen display
3. Power/Standby key
4. Battery charge indicator
5. Day/Night key
6. Near-field communication (NFC) connection area
7. Manual breath key/O2 enrichment key
8. Print screen key/Nebulizer key
9. Audio pause key
10. Press-and-Turn (P&T) knob
11. Expiratory valve bleed port (under the ventilator) Do not obstruct

\(^{10}\) Applies only to devices with serial number > 6000.

\(^{11}\) May not be available on older devices. Contact your Hamilton Medical technical representative for details.
Figure 2-3. Rear view, ventilator

1. RJ-45 Ethernet connector (under the cover)
2. Device labels
3. O2 sensor (under the cover)
4. Air intake and dust filter *Do not obstruct*
5. Rear cover
6. HEPA filter (under the cover)
7. Potential equalization conductor with cover

12 May not be available on older devices. Contact your Hamilton Medical technical representative for details.
Figure 2-4. Side view, with breathing circuit connections

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Communication board (optional)</td>
<td>5</td>
<td>Cooling air outlet</td>
</tr>
<tr>
<td>2</td>
<td>Pneumatic nebulizer port</td>
<td>6</td>
<td>To patient inspiratory port</td>
</tr>
<tr>
<td>3</td>
<td>Flow sensor connection ports</td>
<td>7</td>
<td>From patient expiratory port</td>
</tr>
<tr>
<td>4</td>
<td>Loudspeaker</td>
<td>8</td>
<td>Expiratory valve set</td>
</tr>
</tbody>
</table>
Figure 2-5. Side view, with gas connections

1 USB port (under the cover) 5 Cooling air intake and dust filter
2 High-pressure oxygen DISS or NIST inlet fitting 6 AC power cord with retaining clip
3 Low-pressure oxygen connector 7 Serial number label
4 Power socket
2.2.2 About the main display

Figure 2-6. Main display

1. Patient group symbol and active mode
2. Message bar (color coded)
3. Configurable graphic display (full-length waveforms shown)
4. Modes button
5. Main controls for the active mode
6. Window buttons: Alarms, Controls, Monitoring, Tools, Events, System
7. Power source and battery status
8. Audio pause indicator and countdown timer**
9. Humidifier quick access icon
10. Measured SpO2 value*
11. Main monitoring parameters (MMP)
12. Date and time

* When SpO2 monitoring is enabled.
** When Audio pause is active, the connectivity icons are not displayed. See Table 2-3.
2.2.3 About the patient breathing circuits

Figure 2-7. Adult/pediatric breathing circuits

Adult/Ped: Dual limb with humidifier

1. To patient inspiratory port
2. From patient expiratory port
3. Expiratory valve set
4. Flow sensor connection ports
5. Bacteria filter
6. Inspiratory limb to humidifier
7. Heated inspiratory limb with temperature sensor, to patient
8. Heated expiratory limb
9. Y-piece
10. CO2 sensor/adapter
11. Flow sensor
12. Humidifier
13. Coaxial inspiratory/expiratory limb
14. HMEF
15. Adapters

Some connection adapters may be required, but are not shown. Refer to the breathing circuit Instructions for use.
Figure 2-8. Adult/pediatric breathing circuits: high flow oxygen therapy

Adult/Ped: Dual limb, high flow oxygen therapy

1. To patient inspiratory port
2. From patient expiratory port
3. Expiratory valve set
4. Bacteria filter
5. Inspiratory limb to humidifier
6. Heated inspiratory limb with temperature sensor, to patient
7. Heated expiratory limb
8. Y-piece
9. Adapters (various)
10. Nasal cannula
11. Attachment strap
12. Humidifier

Adult/Ped: Single limb, high flow oxygen therapy

1. To patient inspiratory port
2. From patient expiratory port
3. Expiratory valve set
4. Bacteria filter
5. Inspiratory limb to humidifier
6. Heated inspiratory limb with temperature sensor, to patient
7. Heated expiratory limb
8. Y-piece
9. Adapters (various)
10. Nasal cannula
11. Attachment strap
12. Humidifier
Figure 2-9. Neonatal breathing circuits

Neonatal/pediatric: Dual limb with humidifier

1. **To patient** inspiratory port
2. **From patient** expiratory port
3. Expiratory valve set
4. Flow sensor connection ports
5. Bacteria filter
6. Inspiratory limb to humidifier
7. Heated inspiratory limb with temperature sensor, to patient
8. Unheated inspiratory limb extension, for use in incubator
9. Heated expiratory limb
10. **Y-piece**
11. CO2 sensor/adapter
12. Flow sensor
13. Humidifier
14. Inspiratory limb
15. Expiratory limb
16. HMEF
17. Adapters (various)
Figure 2-10. Neonatal breathing circuits: high flow oxygen therapy

Neonatal/pediatric: Dual limb, high flow oxygen therapy

1. **To patient inspiratory port**
2. **From patient expiratory port**
3. Expiratory valve set
4. Bacteria filter
5. Inspiratory limb to humidifier
6. Heated inspiratory limb with temperature sensor, to patient
7. Unheated inspiratory limb extension, for use in incubator
8. Heated expiratory limb
9. Y-piece
10. Connection to patient interface (options not shown)
11. Humidifier
12. Adapters (various)
Figure 2-11. Neonatal breathing circuit: nCPAP, nCPAP-PC

Neonatal: nCPAP, nCPAP-PC

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>To patient inspiratory port</td>
</tr>
<tr>
<td>2</td>
<td>From patient expiratory port</td>
</tr>
<tr>
<td>3</td>
<td>Expiratory valve set</td>
</tr>
<tr>
<td>4</td>
<td>Pressure line connection port (blue)</td>
</tr>
<tr>
<td>5</td>
<td>Bacteria filter</td>
</tr>
<tr>
<td>6</td>
<td>Inspiratory limb to humidifier</td>
</tr>
<tr>
<td>7</td>
<td>Heated inspiratory limb with temperature sensor, to patient</td>
</tr>
<tr>
<td>8</td>
<td>Unheated inspiratory limb extension, for use in incubator</td>
</tr>
<tr>
<td>9</td>
<td>Heated expiratory limb</td>
</tr>
<tr>
<td>10</td>
<td>Y-piece, T-piece</td>
</tr>
<tr>
<td>11</td>
<td>Pressure line</td>
</tr>
<tr>
<td>12</td>
<td>Humidifier</td>
</tr>
<tr>
<td>13</td>
<td>Adapters (various)</td>
</tr>
</tbody>
</table>
2.2.4 About the trolley and mounting variations

The HAMILTON-C1 can optionally be ordered with a trolley or a shelf mount solution. The trolley has space for one oxygen cylinder.

2.2.4.1 Preparing the trolley for intra-hospital transport

Before proceeding, review the safety information in Chapter 1.

WARNING

- Only the components listed in this section are approved for intrahospital transport.
- Use of additional items, such as a tubing support arm, can result in the trolley tipping over.
- The ventilator must be attached to the trolley using the locking bolt. Ensure the device is securely attached to the trolley before use.

If using a HAMILTON-C1 trolley, the ventilator and its components, as well as the trolley, must be configured and positioned as follows during transport within the hospital:

- The ventilator and oxygen cylinders must be securely attached to the trolley.
- Only the following components are allowed to be connected during transport:
 - Breathing circuit
 - Tubing support arm
 - Flow sensor (or pressure line)
 - CO2 sensor (mainstream or sidestream)
 - O2 cylinder
 - SpO2 sensor, including Masimo adapter
 - Humidifier

2.3 Navigating the windows and controls

Use the touch screen and the Press-and-turn knob (referred to as the P&T knob) to access data and specify settings.

You interact with the HAMILTON-C1 user interface as follows:

- Touch elements on the display to open windows and make and confirm selections.
- Use the P&T knob to select, specify, and confirm selections. A selected item is highlighted in yellow.

This section describes how to navigate the interface.
2.3.1 Accessing windows

To open a window

Do any of the following to open a window:

– Touch the button and any needed tabs.
– Turn the P&T knob to move the cursor to the button or tab, then press the P&T knob.

To close a window

Do any of the following to close a window:

– Touch the window button again.
– Touch the X button.
– Turn the P&T knob to move the cursor to the X button, then press the P&T knob.

2.3.2 Adjusting controls

Specifying settings involves activating a control, adjusting a value, and confirming the setting.

To adjust a control setting

1. Activate the control by doing any of the following:
 – Touch the control to select and activate it; the selected control has a yellow outline.
 – Turn the P&T knob to move the cursor to the control; the selected control has a yellow outline. Press the P&T knob to activate it.

 The activated control is orange (Figure 2-12).

2. Adjust the value by turning the P&T knob to increase or decrease the value. The orange dot indicates the dynamic limit.

3. Confirm the setting by doing any of the following:
 – Touch the control again.
 – Press the P&T knob.

 The new setting is immediately applied.

Figure 2-12. Control status: activated

2.3.3 Selecting list items

Some selections are presented in a scrollable list.

To select a list item

1. In a list, touch the scroll bar to select and activate it.

2. Turn the P&T knob to scroll through the list, and when the desired selection is highlighted, press the knob to select it.
2.3.4 Using shortcuts

The ventilator provides shortcuts for some key functions.

Table 2-3. Shortcuts

<table>
<thead>
<tr>
<th>Touch Quick access icon/shortcut on main display ...</th>
<th>To display the ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls > Patient window</td>
<td>Active mode (top left of display)</td>
</tr>
<tr>
<td>Any MMP</td>
<td>Alarms > Limits 1 window</td>
</tr>
<tr>
<td>SpO2 value (under MMPs)</td>
<td>Alarms > Limits 2 window</td>
</tr>
<tr>
<td>Any graphic (waveform, loop, trend, Intelligent panel)</td>
<td>Graphics selection window</td>
</tr>
<tr>
<td>(any displayed battery icon)</td>
<td>System > Info 1 window</td>
</tr>
<tr>
<td>2017-08-07 07:11:58</td>
<td>System > Settings > Date & Time window</td>
</tr>
<tr>
<td>or 1:40</td>
<td>Alarms > Buffer window</td>
</tr>
</tbody>
</table>

Touch Quick access icon/shortcut on main display ...

- Alarm message in the Alarms > Buffer window
- System > Settings > Humidifier window¹³
- System > Settings > Connectivity window

¹³ If connected to the COM1 port on the ventilator.

¹⁴ If the option is installed. Not available in all markets.
3

Preparing the ventilator

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Connecting to a power source</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>Connecting the oxygen supply</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Ensuring an adequate oxygen supply for patient transport</td>
<td>59</td>
</tr>
<tr>
<td>3.5</td>
<td>Setting up the patient breathing circuit</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Turning the ventilator on and off</td>
<td>71</td>
</tr>
</tbody>
</table>
3.1 Overview

Preparing the ventilator for use comprises the following steps:

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect to a power source.</td>
<td>Section 3.2</td>
</tr>
<tr>
<td>Connect the oxygen supply.</td>
<td>Section 3.3</td>
</tr>
<tr>
<td>Set up the patient breathing circuit, including performing the preoperational check.</td>
<td>Section 3.5</td>
</tr>
<tr>
<td>Connect external devices and sensors.</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Turn on the ventilator.</td>
<td>Section 3.6</td>
</tr>
<tr>
<td>Select the patient group, mode, and alarm limits, and enter patient data.</td>
<td>Chapter 5</td>
</tr>
</tbody>
</table>

3.2 Connecting to a power source

Before proceeding, review the safety information in Chapter 1.

Always check the reliability of the primary power outlet before plugging in the ventilator. The charge icon above the battery shows that the ventilator is plugged in and the battery is charging.

To connect the ventilator to a primary power supply

- Connect the ventilator to an outlet that supplies AC power.
 - Make sure the power cord is well seated into the ventilator socket and secured with the power cord retaining clip to prevent unintentional disconnection.

3.2.1 Working with the potential equalization conductor

The potential equalization conductor is located on the back of the ventilator. See Figure 3-1.

Consider using the potential equalization conductor when working with a CO2 sensor, SpO2 sensor, or similar medical devices.

The potential equalization conductor must *not* be used as a protective earth connection.

To connect the potential equalization conductor

1. Connect one end of a grounding cable to the potential equalization conductor.
2. Connect the other end to a properly grounded outlet.

When not in use, a cover can be placed over the conductor.

15 The potential equalization conductor is designed for the connection of a potential equalization conductor according to DIN 42801 and IEC 60601-1. The function of the potential equalization conductor is to equalize potentials between the ventilator system and other medical devices that can be touched simultaneously.
3.2.2 Using battery power

A mandatory backup battery protects the ventilator from low power or failure of the primary power source.

When the primary power source fails, the ventilator automatically switches to operation on backup battery with no interruption in ventilation. An alarm sounds to signal the switch-over. Silence the alarm to confirm notification of the power system change and reset the alarm.

If battery power is completely lost, a buzzer sounds continuously for at least two minutes.

The battery is charged whenever the ventilator is connected to primary power, whether or not it is turned on. The battery indicator on the device (Figure 3-2) shows the charge status of the battery.

The battery and power source symbols in the bottom right corner of the display show the power source in use. See Table 3-1.

<table>
<thead>
<tr>
<th>Power icon on display</th>
<th>Battery status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device is plugged into primary power and the battery is charging.</td>
</tr>
<tr>
<td></td>
<td>Device is running on battery power and battery is fully charged.</td>
</tr>
<tr>
<td></td>
<td>Battery is partially charged.</td>
</tr>
<tr>
<td></td>
<td>Battery has less than 10% charge left.</td>
</tr>
<tr>
<td></td>
<td>Battery is either defective or not installed.</td>
</tr>
</tbody>
</table>
Table 3-2. Battery charge indicator on ventilator, overview

<table>
<thead>
<tr>
<th>Indicator on ventilator</th>
<th>Battery status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid green: The indicated battery (1 shown) is fully charged and the device is connected to primary power, even when the ventilator is turned off.</td>
</tr>
<tr>
<td></td>
<td>Flashing green: Flashes to show that the device is connected to a primary power source and the indicated battery is charging, even when the ventilator is turned off.</td>
</tr>
<tr>
<td></td>
<td>Not lit: Dark to show the indicated battery is not charging (the device is running on battery power and is not connected to a primary power source or the battery is overheated).</td>
</tr>
</tbody>
</table>

If the battery is not fully charged, recharge it by connecting the ventilator to the primary power source. For details, see Section 15.4.

3.3 Connecting the oxygen supply

Before proceeding, review the safety information in Chapter 1.

Oxygen for the HAMILTON-C1 can be provided by a high- or low-pressure source.

High-pressure oxygen, provided by a central gas supply or a gas cylinder, is supplied through DISS or NIST male gas fittings. With the optional cylinder holder, you can mount an oxygen cylinder to the trolley. If you use gases from the cylinder, secure the cylinder to the trolley with the accompanying straps.

Low-pressure oxygen is provided by a concentrator or liquid cylinder.

The selected setting is active until manually changed or the ventilator is restarted.

3.3.1 Using a low-pressure oxygen supply

Using the low-pressure oxygen supply\(^\text{16}\) involves two steps:

- Connecting the supply to the ventilator (Section 3.3.2)
- Selecting the source type on the ventilator (Section 3.3.3)

3.3.2 Connecting the oxygen supply to the ventilator

To connect the oxygen supply to the ventilator

- Connect the oxygen hose to the HAMILTON-C1’s high-pressure or low-pressure oxygen inlet fitting (Figure 2-5).

\(^{16}\) Not available in all markets.
See Section 3.3.3 for details on selecting the oxygen source on the device.

3.3.3 Selecting the oxygen source type

Before starting ventilation, be sure to select the appropriate oxygen source. By default, the ventilator is set to high-pressure oxygen (HPO).

You set the source in Standby.

To select the oxygen source

1. In Standby mode, touch Tools > Utilities.
2. Touch the appropriate button for the desired oxygen source.
 - Select **HPO mode** for high-pressure oxygen (default).
 - Select **LPO mode** for low-pressure oxygen (see Section 3.3.1).
3. Close the window.

Figure 3-3. Selecting the oxygen source

3.4 Ensuring an adequate oxygen supply for patient transport

WARNING

Before transporting the patient, ensure an adequate oxygen supply by checking the O2 consumption parameter (in the System > Info window) and ensuring it is adequate for your estimated travel time and current oxygen capacity.

Use the appropriate calculation method (see Table 3-3) to estimate total oxygen requirements for the patient.

Before transporting the patient you must ensure that you have enough oxygen for the journey.

Be sure to:

- Review current oxygen consumption (Section 3.4.1)
- Calculate the patient's estimated oxygen requirement (Section 3.4.2)

For neonatal patients, use Method III (Section 3.4.2.3).

For information about estimated oxygen consumption relative to minute volume, see Section 15.12.3.
3.4.1 Reviewing current oxygen consumption

NOTICE
- O2 consumption data is not available with low-pressure oxygen (LPO).
- When initially starting ventilation, the O2 consumption parameter is calculated and displayed after 2.5 minutes.

The current oxygen consumption rate is displayed in the O2 consumption parameter in the System > Info window (Figure 3-4).

The O2 consumption rate is updated every breath and shows the average rate over the last five minutes, after the initial 2.5 minutes of ventilation.

![Figure 3-4. System > Info window, O2 consumption](image)

Figure 3-4. System > Info window, O2 consumption

3.4.2 Calculating estimated oxygen consumption

WARNING
The oxygen consumption of a nebulizer attached to the device is not included in the O2 consumption parameter value. To calculate it, use Method IV (Section 3.4.2.4).

NOTICE
- The oxygen consumption calculation is not intended to affect therapy decisions and should be used solely to estimate the amount of oxygen required for the duration of transport, before connecting the ventilator to the patient.
- The calculations provided here are valid only for systems without leaks at the patient end. For systems with leaks (for example, ventilating with a mask), oxygen consumption will be higher.
- The calculations show the result in liters per minute (l/min). You must multiply the result by the planned duration of transport for the final estimate.

The calculation method for estimating oxygen consumption depends on the patient height and weight, and nebulizer use, as listed in the following table.
Calculating estimated oxygen consumption

Table 3-3. Overview of O2 consumption calculation methods

<table>
<thead>
<tr>
<th>For ...</th>
<th>Applicable for ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method I</td>
<td>Smaller patients:</td>
<td>Section</td>
</tr>
<tr>
<td></td>
<td>≤ 70 cm,</td>
<td>3.4.2.1</td>
</tr>
<tr>
<td></td>
<td>IBW ≤ 8 kg</td>
<td></td>
</tr>
<tr>
<td>Method II</td>
<td>Larger patients:</td>
<td>Section</td>
</tr>
<tr>
<td></td>
<td>> 70 cm,</td>
<td>3.4.2.2</td>
</tr>
<tr>
<td></td>
<td>IBW > 8 kg</td>
<td></td>
</tr>
<tr>
<td>Method III</td>
<td>Neonates:</td>
<td>Section</td>
</tr>
<tr>
<td></td>
<td>Patient group on</td>
<td>3.4.2.3</td>
</tr>
<tr>
<td></td>
<td>the ventilator is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set to Neonatal.</td>
<td></td>
</tr>
<tr>
<td>Method IV</td>
<td>Additional amount</td>
<td>Section</td>
</tr>
<tr>
<td>(nebulizer in use)</td>
<td>to add to the result of Method I or II to account for the nebulizer oxygen use.</td>
<td>3.4.2.4</td>
</tr>
</tbody>
</table>

All of the methods require the following information for the calculation:

- **ExpMinVol** setting (l/min)
- **Oxygen** setting (%)
- **I:E** setting, if using a nebulizer
- Planned duration of transport

The patient height and IBW (or Weight for neonatal patients) determine which of the calculation methods to use (Table 3-3).

17 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
3.4.2.1 Method I. Overall oxygen consumption for smaller patients

Method I\(^8\) is for smaller patients with height ≤ 70 cm, IBW ≤ 8 kg, in liters per minute (l/min).

For neonatal patients, use Method III\(^9\) (Section 3.4.2.3).

Table 3-4. Calculating O2 consumption using Method I for smaller patients

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result and example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To calculate estimated oxygen consumption using Method I:</td>
<td></td>
</tr>
<tr>
<td>O2 cons. = [(ExpMinVol * 2) + 3 l/min] * [(FiO2 - 20.9) / 79.1]</td>
<td></td>
</tr>
<tr>
<td>1 Replace (\text{ExpMinVol}) and (\text{FiO2}) in the equation with the current patient values.</td>
<td>Example uses:</td>
</tr>
<tr>
<td></td>
<td>(\text{ExpMinVol} = 2 \text{ l/min})</td>
</tr>
<tr>
<td></td>
<td>(\text{Oxygen (FiO2)} = 60%)</td>
</tr>
<tr>
<td>2 Solve the equation.(^{20})</td>
<td>The result is the estimated oxygen consumption in liters per minute (l/min).</td>
</tr>
<tr>
<td></td>
<td>Example.</td>
</tr>
<tr>
<td></td>
<td>(\text{O2 consumption} = ((2 * 2) + 3) * (60 - 20.9) / 79.1)</td>
</tr>
<tr>
<td></td>
<td>(\text{O2 consumption} = 7 * 0.494)</td>
</tr>
<tr>
<td></td>
<td>(\text{O2 consumption} = 3.5 \text{ l/min})</td>
</tr>
<tr>
<td>3 Multiply the result by the planned duration of transport, in minutes.</td>
<td>The final result is the estimated oxygen requirement, in liters, for the specified length of time.</td>
</tr>
<tr>
<td></td>
<td>Example.</td>
</tr>
<tr>
<td></td>
<td>(\text{Transport duration} = \sim 60 \text{ minutes})</td>
</tr>
<tr>
<td></td>
<td>Example result.</td>
</tr>
<tr>
<td></td>
<td>(\text{Required O2 for transport} = \sim 3.5 * 60 = 210 \text{ liters})</td>
</tr>
</tbody>
</table>

\(^8\) Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.

\(^9\) If the patient group on the ventilator is set to Neonatal, be sure to use Method III for the calculation. This is important because the base flow is fixed at 4 l/min for neonatal patients and at 3 l/min for adult/pediatric patients.

\(^{20}\) The * 2 is to account for compressible volume in the breathing circuit. See Section 15.12.3.
3.4.2.2 Method II. Overall oxygen consumption for larger patients

Method II21 is for larger patients, with height > 70 cm, IBW > 8 kg in liters per minute (l/min).

For neonatal patients, use Method III19 (Section 3.4.2.3).

Table 3-5. Calculating O2 consumption using Method II for larger patients

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result and example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To calculate estimated oxygen consumption using Method II:</td>
<td>O2 cons. = ([(\text{ExpMinVol} + 3 \text{ l/min})] \times \left[\frac{\text{FiO2} - 20.9}{79.1}\right]</td>
</tr>
</tbody>
</table>
| 1 Replace \textit{ExpMinVol} and \textit{FiO2} in the equation with the current patient values. | \textit{Example uses:} \\
| | \textit{ExpMinVol} = 2 l/min \\
| | \textit{Oxygen (FiO2)} = 60% |
| 2 Solve the equation. | The result is the estimated oxygen consumption in liters per minute (l/min). \\
| | \textit{Example.} \\
| | O2 consumption = \((2 + 3) \times (60 - 20.9) / 79.1\) \\
| | O2 consumption = 5 \times 0.494 \\
| | O2 consumption = 2.5 l/min |
| 3 Multiply the result by the planned duration of transport, in minutes. | The final result is the estimated oxygen requirement, in liters, for the specified length of time. \\
| | \textit{Example.} \\
| | Transport duration = ~60 minutes \\
| | \textit{Example result.} \\
| | Required O2 for transport = ~2.5 \times 60 = \textbf{150 liters} |

21 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
3.4.2.3 Method III. Overall oxygen consumption for neonatal patients

Method III is for neonatal patients. Use this method when the Neonatal patient group is selected on the ventilator.

This method is required because the base flow is fixed at 4 liters per minute (l/min) for neonatal patients, and at 3 liters per minute (l/min) for adult and pediatric patients.

Table 3-6. Calculating O2 consumption using Method III for neonatal patients

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result and example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To calculate estimated oxygen consumption using Method III:</td>
<td>O2 cons. = [(VolMinExp * 2) + 4 l/min] * [(FiO2 - 20.9) / 79.1]</td>
</tr>
<tr>
<td>1 Replace ExpMinVol and FiO2 in the equation with the current patient values.</td>
<td>Example uses: ExpMinVol = 0.5 l/min Oxygen (FiO2) = 60%</td>
</tr>
<tr>
<td>2 Solve the equation*2.</td>
<td>The result is the estimated oxygen consumption in liters per minute (l/min). Example. O2 consumption = ((0.5*2) + 4) * (60 - 20.9) / 79.1 O2 consumption = 5 * 0.494 O2 consumption = 2.5 l/min</td>
</tr>
<tr>
<td>3 Multiply the result by the planned duration of transport, in minutes.</td>
<td>The final result is the estimated oxygen requirement, in liters, for the specified length of time. Example. Transport duration = ~60 minutes Example result. Required O2 for transport = ~2.5 * 60 = 150 liters</td>
</tr>
</tbody>
</table>

*2 The * 2 is to account for compressible volume in the breathing circuit. See Section 15.12.3.
3.4.2.4 Method IV. Nebulizer oxygen consumption

Method IV calculates nebulizer oxygen consumption. The result of this calculation is added to the result of Method I or II.

Table 3-7. Calculating O2 consumption with a nebulizer

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Result and example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To calculate estimated oxygen consumption using Method IV:</td>
<td></td>
</tr>
<tr>
<td>Neb. O2 cons. = 8 l/min * (Insp time / total breath time)</td>
<td></td>
</tr>
<tr>
<td>1 Calculate the ventilation oxygen requirement using Method I or II.</td>
<td>Example uses:</td>
</tr>
<tr>
<td>Method I</td>
<td></td>
</tr>
<tr>
<td>ExpMinVol = 2 l/min</td>
<td></td>
</tr>
<tr>
<td>Oxygen (FiO2) = 60%</td>
<td></td>
</tr>
<tr>
<td>Transport duration = 30 minutes</td>
<td></td>
</tr>
<tr>
<td>Example result.</td>
<td></td>
</tr>
<tr>
<td>O2 consumption = 3.5 l/min</td>
<td></td>
</tr>
<tr>
<td>Required O2 for transport = ~3.5 * 30 = 105 liters</td>
<td></td>
</tr>
<tr>
<td>2 Calculate the nebulizer oxygen requirement.</td>
<td>Replace Insp Time / total breath time with the current patient I:E value.</td>
</tr>
<tr>
<td>Example.</td>
<td></td>
</tr>
<tr>
<td>I:E = 1:3 The inspiration time is one-quarter (0.25) of the total breath time.</td>
<td></td>
</tr>
<tr>
<td>Neb. O2 cons. = 8 * 0.25 = 2 l/min</td>
<td></td>
</tr>
<tr>
<td>3 Multiply the result of step 2 by the planned nebulization duration.</td>
<td>The result is the oxygen requirement for the nebulizer only.</td>
</tr>
<tr>
<td>Example.</td>
<td></td>
</tr>
<tr>
<td>Neb. O2 cons. = 2 l/min</td>
<td></td>
</tr>
<tr>
<td>Transport duration = ~30 minutes</td>
<td></td>
</tr>
<tr>
<td>Example result.</td>
<td></td>
</tr>
<tr>
<td>Required O2 for nebulizer during transport = ~2 * 30 = 60 liters</td>
<td></td>
</tr>
<tr>
<td>4 Add the results from steps 1 and 3.</td>
<td>This gives you the total estimated oxygen requirement for the duration of transport and the specified nebulization time.</td>
</tr>
<tr>
<td>Example.</td>
<td></td>
</tr>
<tr>
<td>Required O2 for nebulizer during transport = 60 liters</td>
<td></td>
</tr>
<tr>
<td>Required O2 for transport = 105 liters</td>
<td></td>
</tr>
<tr>
<td>Example result.</td>
<td></td>
</tr>
<tr>
<td>Total required O2 for transport = 105 + 60 = 165 liters</td>
<td></td>
</tr>
</tbody>
</table>
3.5 Setting up the patient breathing circuit

Before proceeding, review the safety information in Chapter 1.

Connecting the breathing circuit comprises the following steps.

For neonatal ventilation, see Chapter 6.

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the expiratory valve.</td>
<td>Section 3.5.2</td>
</tr>
<tr>
<td>Select the appropriate breathing circuit and components.</td>
<td>Section 3.5.3</td>
</tr>
<tr>
<td>Assemble the breathing circuit.</td>
<td>Section 3.5.4</td>
</tr>
<tr>
<td>Adjust the position of the breathing circuit.</td>
<td>Section 3.5.5</td>
</tr>
<tr>
<td>Change breathing circuit components during ventilation</td>
<td>Section 3.5.6</td>
</tr>
<tr>
<td>Connect external devices and sensors.</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Perform any required tests, calibrations, and the preoperational check.</td>
<td>Chapter 5</td>
</tr>
</tbody>
</table>

3.5.1 Breathing circuit connections on the ventilator

Figure 3-5 illustrates the key ports on the ventilator for connecting the breathing circuit set.

For breathing circuit diagrams, see Section 2.2.3.

![Figure 3-5. Key connection ports](image-url)
3.5.2 Working with the expiratory valve set

This section describes how to assemble/install, and remove/disassemble the expiratory valve set.

Be sure to install the correct expiratory valve for the selected patient group.

Figure 3-6. Comparison between the Adult/Ped and Neonatal expiratory valves (differences highlighted in blue)

To assemble/install the expiratory valve set

Refer to Figure 3-7.

1. Remove the safety cover.

2. Ensure the membrane is properly aligned with the expiratory valve housing and the metal plate faces up (A).

3. Position the expiratory valve set in the expiratory port (B) and twist the locking ring clockwise until it locks into place (C).

To remove and disassemble the expiratory valve set

1. Remove the expiratory valve set from the expiratory port on the ventilator.

2. Holding the expiratory valve housing, remove the silicone membrane (A in Figure 3-7) by lifting it up.
3.5.3 Selecting the breathing circuit components

Select the correct breathing circuit parts for your patient.

For neonatal ventilation, see Chapter 6.

Table 3-8. Breathing circuit component specifications

<table>
<thead>
<tr>
<th>Patient data/ Component</th>
<th>Adult</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient height (cm)</td>
<td>> 130</td>
<td>30 to 150</td>
</tr>
<tr>
<td>IBW (kg)</td>
<td>> 30</td>
<td>3 to 48</td>
</tr>
<tr>
<td>Breathing circuit limb ID (mm)(^{23})</td>
<td>15 to 22</td>
<td>10 to 22</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>Adult/Ped</td>
<td>Adult/Ped</td>
</tr>
<tr>
<td>CO2 airway adapter</td>
<td>Adult/Ped(^{24})</td>
<td>Adult/Ped(^{24})</td>
</tr>
</tbody>
</table>

3.5.3.1 Using a filter in the breathing circuit

NOTICE

When connecting a filter to the inspiratory or expiratory port, pay special attention to the fit and seal of the filter to the port, in particular with filters that offer additional connectors (such as a luer connector).

For proper function, it is important that all components in the breathing circuit set are properly positioned and securely connected.

Before proceeding, review the safety information in Chapter 1.

Inspiratory bacteria filter

To prevent patient or ventilator contamination, be sure to connect a bacteria (inspiratory) filter or HMEF between the patient and the inspiratory port.

For neonatal patients, use a neonatal-pediatric HMEF.

If no inspiratory filter is used, the exhaled gas can contaminate the ventilator. If you are not using an inspiratory filter, and an exhalation obstructed alarm is generated, the ventilator may be contaminated. Have the ventilator serviced.

Expiratory bacteria filter

Before using an expiratory filter with nebulization, review the safety information in Section 1.5.5.

An expiratory filter is not technically required on the HAMILTON-C1. The expiratory valve design prevents internal ventilator components from coming into contact with the patient’s exhaled gas, preventing any cross-contamination. However, your institution’s protocol for certain circumstances may require the use of an expiratory filter (COVID-19 or other illness/disease, no room contamination, and so on).

If you use an expiratory filter, place it on the patient side of the expiratory valve set. Monitor closely for increased expiratory circuit resistance.

An Exhalation obstructed alarm may also indicate excessive expiratory circuit resistance. If the Exhalation obstructed alarm occurs repeatedly, remove the expiratory filter immediately. If you otherwise suspect

\(^{23}\) When using coaxial breathing sets, follow the manufacturer’s recommendations for each patient group.

\(^{24}\) When tracheal tube ID > 4 mm.
increased expiratory circuit resistance, remove the expiratory filter or replace the filter to eliminate it as a potential cause.

Heat and moisture exchanging filter (HMEF)

The HMEF is a passive humidification component used together with a bacteria filter. Use an HMEF when ventilating with a coaxial breathing system.

3.5.3.2 Using a speaking valve in the breathing circuit

A speaking valve allows certain tracheostomized adult and pediatric patients to communicate verbally, in addition to numerous other clinical benefits.

Speaking valve compatibility is an option available for Adult/Ped invasive ventilation when using any of the following modes: PCV+, PSIMV+, and SPONT.

For setup details, see Section 4.7. For details about working with the speaking valve, see Section 10.8.

3.5.4 Assembling the patient breathing circuit

Assemble the appropriate breathing circuit for your patient. Commonly used standard breathing circuit configurations are illustrated in Section 2.2.3.

For neonatal ventilation, see Chapter 6.

3.5.4.1 Connecting the flow sensor

NOTICE

To prevent inaccurate flow sensor readings, make sure the flow sensor is correctly connected.

Before proceeding, review the safety information in Chapter 1.

To connect a flow sensor to the breathing circuit

1. Insert a flow sensor into the breathing circuit in front of the patient connection (Figure 3-8).

 See also the breathing circuit diagrams in Section 2.2.3.

2. Attach the blue and clear tubes to the flow sensor connection ports on the ventilator (Figure 3-5).

 The blue tube attaches to the blue connection port. The clear tube attaches to the white connection port.

3. Calibrate the flow sensor and perform the Leak test. See Section 5.4.

![Figure 3-8. Connecting the flow sensor to the Y-piece or circuit](image)

Adult/Ped, flow sensor connection – dual limb circuit, Y-piece

Adult/Ped, flow sensor connection – coaxial circuit

Neonatal, flow sensor connection – dual limb circuit, Y-piece
3.5.4.2 Use of adult/pediatric flow sensor with neonatal/pediatric breathing circuits

With small pediatric patients whose IBW is below 20 kg, using an adult/pediatric breathing circuit can generate too much dead space, resulting in ineffective ventilation.

For these patients, consider using a neonatal/pediatric breathing circuit with an adult/pediatric flow sensor instead.

To use an adult/pediatric flow sensor with a neonatal/pediatric breathing circuit

1. Verify that the Adult/Ped patient group is selected.
2. Verify that the patient IBW is below 20 kg.
3. Set up the ventilator for adult/pediatric ventilation with the adult/pediatric flow sensor, but connect a neonatal/pediatric breathing circuit.
4. Perform the Leak test, calibrate the flow sensor, and perform other preoperational checks. See Section 5.4.
5. Connect the patient.

3.5.5 Positioning the breathing circuit

NOTICE

- To prevent water accumulation in the flow sensor and tubing, position the flow sensor tubing on top of the flow sensor.
- Ensure there is no undue stress placed on any tubing or cables.

After assembly, position the breathing circuit so that the hoses will not be pushed, pulled, or kinked as a result of a patient’s movement, transport, or other activities, including scanner bed operation and nebulization.

The next step is to perform all required tests, calibrations, and the preoperational check. See Chapter 5.

3.5.6 Changing breathing circuit components during ventilation

During ventilation, it may be necessary to add components to the breathing circuit, or to change existing components. To do so in the safest manner for the patient and personnel, we recommend following this general process:

1. Enter Standby.
2. Provide alternative ventilation for the patient.
3. Change or add components, in accordance with your institution’s standards and protocols. See Section 1.4.1 for important safety information.
4. Perform the preoperational check (Section 5.4).
5. Re-connect the patient.
6. Verify settings, and resume ventilation.
3.6 Turning the ventilator on and off

To ensure the Event log records all events properly, do the following:

- When entering Standby, wait at least 30 seconds before turning off the ventilator.
- After turning off the ventilator, wait at least 3 seconds before turning the ventilator back on.

To turn on the ventilator

- Press (Power/Standby).

The ventilator runs a self-test. After a short time, the Standby window is displayed.

Proceed with setting up the ventilator and patient, as appropriate.

If the startup process does not complete successfully when turning on the ventilator, proceed as follows.

To turn on the ventilator if startup is not successful

1. Turn off the ventilator by pressing and holding (Power/Standby) for about 10 seconds.
2. Turn the ventilator on again by pressing .

To turn off the ventilator

1. Press (Power/Standby) to open the Activate Standby window during active ventilation.
2. Touch Activate standby to confirm. The ventilator enters Standby.
3. Press and hold (Power/Standby) for about 3 seconds to turn off the ventilator.

The ventilator turns off.

In the event of a technical fault or the device will not turn off

- Press and hold (Power/Standby) for about 10 seconds to turn off the ventilator.
Preparing the ventilator
4 Setting up external devices and sensors

4.1 Overview.. 74
4.2 Setting up a humidifier .. 74
4.3 Setting up CO2 monitoring ... 75
4.4 Setting up SpO2 monitoring ... 79
4.5 Enabling sensors .. 79
4.6 Setting up nebulization ... 80
4.7 Setting up a speaking valve .. 81
4.8 Connecting to external devices... 83
4.1 Overview

The HAMILTON-C1 supports a variety of external devices and sensors for ventilation, including:

- Humidifier
- CO2 monitoring sensors
- Pulse oximetry (SpO2 monitoring) sensors
- Nebulizers
- Speaking valves

This chapter describes how to set them up for ventilation.

4.2 Setting up a humidifier

Before proceeding, review the safety information in Chapter 1.

When used with the optional HAMILTON-H900 humidifier, the ventilator supports remote access to the humidifier controls and status.\(^{25,26}\)

Other humidifiers are supported, without the integration. To connect a non-Hamilton Medical humidifier, refer to the manufacturer’s *Instructions for use.*

To connect the HAMILTON-H900 humidifier to the ventilator

1. Attach the humidifier to the trolley, if appropriate. See the *Installation Guide for HAMILTON-H900 Humidifier on HAMILTON-C1/T1 Trolley* (PN 10099119).

2. Connect a potential equalization cable to the humidifier and to a grounding socket at your facility.

3. Plug the humidifier into primary power.

4. Connect the communication cable:
 - Connect one end of the cable to the humidifier (Figure 4-1).
 - Connect the other end of the cable to the COM1 port on the communication board (Figure 4-2).

\(^{25}\) Not available in all markets.

\(^{26}\) Supported for HAMILTON-H900 software version 1.05b and later.
For additional details about:

- Connecting the humidifier to the breathing circuit, see Section 2.2.3.
- Working with the humidifier, see the HAMILTON-H900 Instructions for use.
- Controlling the humidifier from the ventilator, see Chapter 11.

4.3 Setting up CO2 monitoring

Before proceeding, review the safety information in Chapter 1.

CO2 monitoring data is helpful for the assessment of the patient’s airway integrity or ensuring proper endotracheal tube placement, among other applications.

Two CO2 measurement options are available: mainstream and sidestream. Which option you use depends on the clinical setting.\(^\text{27}\)

Enabling CO2 measurement on the ventilator requires enabling the CO2 hardware (in Configuration) and enabling the sensor.

Table 4-1. CO2 measurement overview

<table>
<thead>
<tr>
<th>For details about ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainstream CO2 measure-ment, connection, and use</td>
<td>Section 4.3.1</td>
</tr>
<tr>
<td>Sidestream CO2 measure-ment, connection, and use</td>
<td>Section 4.3.2</td>
</tr>
<tr>
<td>Enabling the CO2 hardware</td>
<td>Section 13.11.3</td>
</tr>
<tr>
<td>Enabling the CO2 sensor</td>
<td>Section 4.5</td>
</tr>
</tbody>
</table>

\(^{27}\) The volumetric capnogram is only available when using a mainstream CO2 sensor.

4.3.1 Mainstream CO2 measurement

The CO2 monitoring option comprises the following components (shown in Figure 4-3): communication board, airway adapter, and CO2 sensor.

The sensor generates infrared light and beams it through the airway adapter to a detector on the opposite side. CO2 from the patient, flowing through the mainstream airway adapter, absorbs some of this infrared energy.

The system determines the CO2 concentration in the breathing gases by measuring the amount of light absorbed.

The ventilator displays CO2 measurements as numeric values, waveforms, trends, and loops.

Figure 4-3. Mainstream CO2 monitoring components and assembly
4.3.1.1 Connecting the mainstream CO2 sensor

Before proceeding, review the safety information in Chapter 1.

CAUTION

When using active humidification, prevent water accumulation in the CO2 adapter by ensuring that it is positioned at a ≥ 45° angle relative to the floor. Excess water can affect the sensor measurements.

NOTICE

You must use an appropriate adapter to connect the mainstream CO2 sensor to a neonatal flow sensor.

Ensure the CO2 sensor and adapter are clean and dry before connection.

To set up mainstream CO2 monitoring

Refer to Figure 4-3.

1. Connect the sensor cable to the CO2 connection port (1) on the ventilator.
2. Attach the CO2 sensor (3) to the airway adapter (2), aligning the arrows on both components. Press the components together until they click.
3. If needed, connect the potential equalization USB cable to the USB port and a grounding socket at your facility.

4. When connecting a CO2 sensor for the first time, perform the zero calibration of the sensor(adapter, if needed, as described in Section 5.4.5.

5. Connect the sensor/adapter to the breathing circuit proximal to the patient, in a vertical position. See Figure 4-4.

 Do not place the airway adapter between the ET tube and any connected adapter, as this may allow patient secretions to accumulate in the adapter.

 The sensor cable should face away from the patient.

6. Secure the cable safely out of the way.

28 Recommended in all cases. Not required when the device is running on DC or battery power, or when the communication Y-cable to HAMILTON-H900 and RS-232 is in use.

29 You can connect the CO2 sensor in front of or behind the flow sensor according to your institution’s protocol.
To verify the quality of the connection

- Check the capnogram (CO2 waveform) on the ventilator display.
 - If CO2 levels are higher than expected, check the patient condition.
 - If you determine that the patient’s condition is not contributing, calibrate the sensor (Section 5.4.5).

To disconnect the sensor cable from the ventilator

- Pull back on the connector sheath and disengage from the connection port on the ventilator.

4.3.2 Sidestream CO2 measurement

The LoFlo CO2 module is a sidestream CO2 monitoring system comprising the following components (shown in Figure 4-5): communication board, airway sampling adapter, and CO2 module.

The module generates infrared light and beams it through the sample cell to a detector on the opposite side. CO2 from the patient that is aspirated into the sample cell absorbs some of this energy. The system uses a sampling rate of 50 ml/min.

The system determines CO2 concentration in the breathing gases by measuring the amount of light absorbed.

The ventilator displays CO2 measurements as numeric values, waveforms, trends, and loops.

Figure 4-5. Sidestream CO2 monitoring components and assembly

1 Communication board with CO2 connection port
2 CO2 module
3 Airway adapter (Neonatal)
4 Sampling cell
5 Connecting sampling cell to module
6 Airway adapter (Adult/Ped.)
4.3.2.1 Connecting the sidestream CO2 sensor

WARNING

Connect the CO2 airway adapter according to your institution’s policy and procedures. Connecting the airway adapter between the flow sensor and the endotracheal tube increases dead space and may contribute to incorrect volume measurements.

Before proceeding, review the safety information in Chapter 1.

To set up CO2 sidestream monitoring

Refer to Figure 4-5.

1. Connect the CO2 module cable to the CO2 connection port (1) on the ventilator.

2. Insert the sample cell (4) into the CO2 module (2). The sample cell clicks into place. Inserting the sample cell into the module automatically starts the sampling pump. Removing the cell turns the pump off.

3. If needed, connect the potential equalization USB cable to the USB port and a grounding socket at your facility.

4. Perform the zero calibration of the adapter, if necessary, as described in Section 5.4.5 before connecting it to the breathing circuit.

5. Connect the adapter between the inspiratory limb and the flow sensor (or between the inspiratory limb and HMEF, if used). See Figure 4-6. The sampling line should face away from the patient.

6. Secure the sampling line safely out of the way.

To remove the sample cell

1. Remove the airway adapter from the breathing circuit.

2. Press down on the locking tab and remove the sample cell from the CO2 module.

30 Recommended in all cases. Not required when the device is running on DC or battery power, or when the communication Y-cable to HAMILTON-H900 and RS-232 is in use.
4.4 Setting up SpO2 monitoring

The HAMILTON-C1 supports input of SpO2 and related pulse oximetry data, and provides integrated monitoring and data display.

Enabling SpO2 measurement on the ventilator requires enabling the SpO2 hardware (in Configuration) and enabling the SpO2 sensor.

Table 4-2. SpO2 measurement overview

<table>
<thead>
<tr>
<th>For details about ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activating the SpO2 hardware</td>
<td>Section 13.11.3</td>
</tr>
<tr>
<td>Enabling the SpO2 sensor</td>
<td>Section 4.5</td>
</tr>
<tr>
<td>Working with SpO2 data</td>
<td>Pulse Oximetry Instructions for Use</td>
</tr>
</tbody>
</table>

4.5 Enabling sensors

Before proceeding, review the safety information in Chapter 1.

In addition to hardware activation for CO2 and SpO2 measurement (Section 13.11.3), the O2, CO2, and/or SpO2 sensors must be individually enabled for monitoring data to be available.

To enable sensor monitoring

1. Touch **System > Sensors > On/Off**.
2. Select the appropriate checkboxes (O2 sensor, CO2 sensor, SpO2 sensor) to enable/disable the monitoring functions, as desired.

The ventilator always enables O2 monitoring upon restart.

Figure 4-7. System > Sensors > On/Off window

31 If the option is installed and activated.
4.6 Setting up nebulization

The HAMILTON-C1 supports the use of Aerogen and pneumatic nebulizers for adult and pediatric patients.32

For neonatal patients, use an Aerogen nebulizer system33, the use of pneumatic nebulizers is not supported. For Aerogen connection and device details, refer to the manufacturer's Instructions for use.

To connect a pneumatic nebulizer to the breathing circuit set

1. Connect the nebulizer to the breathing circuit as shown in Figure 4-8.
2. Connect the nebulizer tubing to the Nebulizer port on the ventilator (Figure 2-4).

For additional details, refer to the manufacturer's Instructions for use.

To connect an Aerogen nebulizer to the breathing circuit set

1. Connect the nebulizer to the breathing circuit as appropriate. See Figure 4-9.
2. Connect the nebulizer USB cable to the ventilator USB port.

For nebulizer details and operation, see Section 10.7.

The following figure presents a nebulizer placement example. For other placement options, see the Nebulizer positioning guidelines (ELO2020-124-TW), available online on MyHamilton, and the manufacturer's Instructions for use.

For additional details, refer to the manufacturer's Instructions for use.

32 See the Hamilton Medical e-catalog for compatible devices.
33 Aerogen nebulization is not supported for patients younger than 28 days old in the USA.
34 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
4.7 Setting up a speaking valve

A speaking valve allows certain tracheostomized adult and pediatric patients to communicate verbally, in addition to numerous other clinical benefits.

Table 4-3 describes the steps required to set up the patient for ventilation with a speaking valve.

Table 4-3. Speaking valve patient setup

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect the speaking valve</td>
<td></td>
</tr>
<tr>
<td>Select a compatible mode.</td>
<td>Section 10.8</td>
</tr>
<tr>
<td>Activate speaking valve compatibility.</td>
<td>Section 4.7.1</td>
</tr>
<tr>
<td>Deflate the tracheostomy cuff.</td>
<td></td>
</tr>
<tr>
<td>Connect the speaking valve to the breathing circuit set and patient.</td>
<td>Section 4.7.2</td>
</tr>
<tr>
<td>Review control settings and alarm limits.</td>
<td>Section 10.8.4 and Chapter 5</td>
</tr>
<tr>
<td>Start ventilation.</td>
<td></td>
</tr>
<tr>
<td>Remove the speaking valve</td>
<td></td>
</tr>
<tr>
<td>Remove speaking valve from the breathing circuit.</td>
<td></td>
</tr>
<tr>
<td>Deactivate speaking valve compatibility.</td>
<td>Section 4.7.3</td>
</tr>
<tr>
<td>Inflate the tracheostomy cuff.</td>
<td></td>
</tr>
<tr>
<td>Review control settings and alarm limits.</td>
<td>Section 10.8.4 and Chapter 5</td>
</tr>
</tbody>
</table>

4.7.1 Activating speaking valve compatibility

NOTICE

If PEEP > 0, auto-triggering can occur while using a speaking valve.

By default, speaking valve compatibility is deactivated (OFF).

Figure 4-10. Controls > SpeakValve window

1. Controls
2. SpeakValve
3. SpeakValve ON, SpeakValve OFF
4. Important safety information
5. Apply
To activate the use of a speaking valve with the ventilator

1. Touch Controls > SpeakValve. Be sure to carefully read the safety information displayed in the window.

2. Be sure to do the following:
 – Deflate the cuff.
 – Connect a speaking valve.

3. To activate compatibility, touch SpeakValve ON, then touch Apply.
 Consider setting PEEP to 0 while compatibility is activated.

As long as compatibility is activated, the message SpeakValve ON is active and the following safety messages are shown in the SpeakValve window:

Messages in SpeakValve window

- The tracheostomy cuff must be completely deflated prior to connecting a speaking valve.
- Disconnection alarms and the Inspiratory limitation alarm are disabled. The Vt alarms are based on VTI. The ExpMinVol alarm limits are set to OFF. Apnea backup ventilation is disabled.

4.7.2 Connecting a speaking valve to the breathing circuit set

Connect the speaking valve between the flow sensor and the patient interface.

Pay careful attention to any safety information and requirements for cuff deflation.

For connection details, refer to the speaking valve manufacturer’s Instructions for use.

4.7.3 Deactivating speaking valve compatibility

In some cases, compatibility is automatically deactivated. See Section 10.8.1.

To deactivate speaking valve compatibility

1. Touch Controls > SpeakValve.

2. Touch SpeakValve OFF, then touch Apply.

3. Be sure to do the following:
 – Remove the speaking valve from the breathing circuit.
 – Inflate the cuff.

When compatibility is deactivated (OFF), the following safety messages are shown in the SpeakValve window:

Messages in SpeakValve window

- Remove the speaking valve, deactivate speaking valve compatibility, and inflate the tracheostomy cuff.
- All alarms are enabled. The Vt alarms are based on VTE.
- Apnea backup ventilation is enabled.

Upon deactivation, alarms and monitoring parameters return to their previous operation, and the ExpMinVol alarm limits are reset based on the patient’s IBW.

For details, see Sections 10.8.3 and 10.8.4.
4.8 Connecting to external devices

You can connect the ventilator to a patient monitor, a Patient Data Management System (PDMS), or computer using the communication port on the communication board, if installed. For details, see the Communication Interface User Guide, available on MyHamilton.

When used with the Hamilton Connect App, medical caregivers can view ventilation-related information directly on a smartphone.³⁵

For additional information see:

- For a list of supported smartphones, see MyHamilton.
- For details about selecting a communication protocol for use with the communication board, see Section 13.3.3.
- For details about enabling a supported connection type, such as Bluetooth wireless technology or Wireless LAN (Wi-Fi) on the ventilator, see Section 11.2.
- For details about configuring connectivity settings, including Connectivity configuration file import/export and Hamilton Connect Module firmware update, see Section 13.9.
- For details about the Hamilton Connect App, see the Hamilton Connect App Instructions for use.

³⁵ Not available in all markets.
Setting up external devices and sensors
5

Specifying ventilation settings

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Process overview</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Selecting the patient group</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Entering patient data</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Performing the preoperational check, tests, and calibrations</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Selecting the ventilation mode</td>
<td>96</td>
</tr>
<tr>
<td>5.6</td>
<td>Reviewing and adjusting ventilation settings</td>
<td>97</td>
</tr>
<tr>
<td>5.7</td>
<td>Setting alarm limits</td>
<td>101</td>
</tr>
<tr>
<td>5.8</td>
<td>Starting ventilation</td>
<td>106</td>
</tr>
<tr>
<td>5.9</td>
<td>Stopping ventilation (Standby)</td>
<td>106</td>
</tr>
<tr>
<td>5.10</td>
<td>About the control parameters</td>
<td>107</td>
</tr>
</tbody>
</table>
5.1 Process overview

This section explains how to set up the HAMILTON-C1 for ventilation on an individual patient.

Setting up ventilation generally comprises the following steps, each of which is described in this chapter:

- Selecting the patient group
- Selecting the desired preconfigured settings (Quick setup)
- Specifying patient data
- Performing the preoperational check, including:
 - Performing a breathing circuit Leak test
 - Calibrating the flow sensor, O2 sensor, and zero calibration of the CO2 sensor
 - Calibrating the breathing circuit (nCPAP and nCPAP-PC modes)
- Testing alarms
- Selecting the ventilation mode
- Reviewing and adjusting control settings
- Reviewing and adjusting alarm limits

5.2 Selecting the patient group

Before proceeding, review the safety information in Chapter 1.

The HAMILTON-C1 supports the following patient groups: Adult/Ped (adult and pediatric patients) and Neonatal.

Table 5-1. Patient groups

<table>
<thead>
<tr>
<th>Adult/Ped</th>
<th>Neonatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: Male, Female</td>
<td>Weight: 0.2 to 30 kg</td>
</tr>
<tr>
<td>Height: 30 to 250 cm</td>
<td>Minimum delivered tidal volume: 2 ml</td>
</tr>
<tr>
<td>IBW: 3 to 139 kg</td>
<td></td>
</tr>
<tr>
<td>Minimum delivered tidal volume: 20 ml</td>
<td></td>
</tr>
</tbody>
</table>

To select the patient group and initial settings

1. In the Standby window (Figure 5-1), touch the desired patient group tab:
 - Adult/Ped
 - Neonatal
 - Last patient. Reuse the last active ventilator parameters.

 The icon for the selected patient group appears to the left of the mode name at the top left of the display (Figure 2-6).

2. For a new patient, touch the desired Quick setup button (Section 5.2.1).

 The settings saved with the selected Quick setup are loaded and displayed, in addition to the default patient sex/height/IBW (Adult/Ped) or weight (Neonatal).

Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
5.2.1 About Quick setups: preconfigured settings

For each of the patient groups, you can define up to three different default configurations, referred to as Quick setups.

During patient setup, you can then quickly preconfigure the ventilator per your standard protocols, and modify settings as needed.

Each Quick setup defines:

- A ventilation mode
- Mode control settings
- Graphic display selections
- Alarm limit settings
- Vent Status panel settings
- Vt/IBW (Adult/Ped) or Vt/kg (Neonatal)
- Specified humidifier settings (if connected)
- Default CPR ventilation settings

The Quick setups are defined in Configuration (Chapter 13).

When HiFlowO2 is selected: Start therapy; when CPR ventilation is on: Start CPR.
5.3 Entering patient data

CAUTION

Entering the correct patient data ensures safe ventilation settings for start up, Apnea backup, and safety ventilation.

Before proceeding, review the safety information in Chapter 1.

Specifying the correct patient data is particularly important, as the ventilator uses this data as a basis for some calculations and initial mode control settings.

- For the Adult/Ped patient group, the ventilator uses sex and patient height to calculate the ideal body weight (IBW).

 The following control settings are based on IBW: Vt, Rate, T low, T high, and TI, and Apnea backup and safety settings.

- For Neonatal patients, the ventilator uses the patient body weight.

 The following parameters are set based on Weight: Vt, Rate, T low, T high, TI, and TI max, and Apnea backup and safety settings.

To enter patient data

- In the Standby window:
 - Adult/Ped. Specify the patient sex and height. The device calculates the patient IBW.
 - Neonatal. Specify the patient weight.

5.4 Performing the preoperative check, tests, and calibrations

The tests and calibrations described in this section help verify the safety and reliability of the ventilator.

If a test fails, troubleshoot the ventilator as indicated or have the ventilator serviced. Make sure the tests pass before you return the ventilator to clinical use.

The test results are stored in memory, including when the ventilator is turned off. This allows the ventilator to be checked and kept in storage, ready for use.

The time and date of the last test is displayed in the System > Tests & calib. window. Ensure the last performed preoperative test is valid for your patient.

The audible alarm is paused during calibration, and for 30 seconds thereafter.

Table 5-2. When to perform tests and calibrations

<table>
<thead>
<tr>
<th>Test or calibration</th>
<th>When to perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative check</td>
<td>Before connecting a new patient to the ventilator.</td>
</tr>
<tr>
<td>Flow sensor/circuit calibration and Leak test</td>
<td>After connecting a new breathing circuit or component (including a flow sensor or pressure-monitoring line).</td>
</tr>
<tr>
<td>O2 sensor calibration, if needed</td>
<td>After installing a new O2 sensor or when a related alarm occurs.</td>
</tr>
</tbody>
</table>
Performing the preoperational check

Before proceeding, review the safety information in Chapter 1.

For details about performing the preoperational check with neonatal ventilation, see Section 6.2.

When to perform

Before connecting a new patient to the ventilator.

To perform the preoperational check

1. Use a setup as described in Table 5-3.
2. Perform all of the steps in Table 5-4.

To ensure that the ventilator functions according to specifications on your patient, perform the preoperational check using the breathing circuit that will be used on the patient.

Table 5-3. Test breathing circuit setup

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing circuit</td>
<td>Adult/pediatric, ID10 to ID22</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>Adult/pediatric, with calibration adapter</td>
</tr>
<tr>
<td>Test lung</td>
<td>Demonstration lung, 2 liter, with adult ET tube between flow sensor and lung</td>
</tr>
</tbody>
</table>

To access tests and calibration functions

1. Do either of the following:
 - Touch **System > Tests & calib**.
 - In the **Standby** window, touch **Preop check**.
2. Touch the button for the desired operation.

Figure 5-2. System > Tests & calib window

<table>
<thead>
<tr>
<th>Test or calibration</th>
<th>When to perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 sensor/adapter zero calibration (mainstream/ sidestream)</td>
<td>Required after connecting a CO2 sensor or when a related alarm occurs.</td>
</tr>
<tr>
<td></td>
<td>Recommended after switching between different airway adapter types.</td>
</tr>
<tr>
<td>Alarm tests</td>
<td>As desired</td>
</tr>
</tbody>
</table>
Table 5-4. Preoperational check, overview

<table>
<thead>
<tr>
<th>Do or observe…</th>
<th>Verify …</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Connect ventilator to primary power and an oxygen supply.</td>
<td></td>
</tr>
<tr>
<td>2 Assemble the patient breathing circuit.</td>
<td>The breathing circuit is assembled correctly.</td>
</tr>
<tr>
<td>3 Turn on the ventilator.</td>
<td>During the self test, the alarm lamp flashes yellow and red in sequence.</td>
</tr>
<tr>
<td>4 With the ventilator in Standby, touch Preop check in the Standby window.</td>
<td>The System > Tests & calib window opens.</td>
</tr>
<tr>
<td>5 Perform the Leak test.</td>
<td>The test passes. See Section 5.4.2.</td>
</tr>
<tr>
<td>6 Calibrate the flow sensor.</td>
<td>The calibration is successful. See Section 5.4.3.</td>
</tr>
<tr>
<td>7 If necessary, run the O2 sensor calibration.</td>
<td>The calibration is successful. See Section 5.4.4.</td>
</tr>
<tr>
<td>8 If necessary, run the CO2 sensor zero calibration.</td>
<td>The zero calibration is successful. See Section 5.4.5.</td>
</tr>
<tr>
<td>9 Generate test alarms.</td>
<td>The corresponding alarm message is displayed in the message bar. See Section 5.4.6.</td>
</tr>
</tbody>
</table>

Corrective action

- ✔️ indicates the component is calibrated and ready. ✗ indicates the calibration was unsuccessful.

If the ventilator does not pass the preoperational check, have it serviced.

5.4.2 Performing the breathing circuit Leak test

Before proceeding, review the safety information in Chapter 1.

To perform the Leak test

1. Set up the ventilator for ventilation, complete with breathing circuit and flow sensor.
2. Touch System > Tests & calib.
3. Touch Leak test.
 The text Disconnect patient is now displayed.
4. Disconnect the breathing circuit at the patient side of the flow sensor. Do not block the open end of the flow sensor.
 The text Block breathing circuit is now displayed.
5. Block the opening (wearing a glove is recommended). See Figure 5-3.
 Ensure the opening is fully blocked. Failure to do so may result in test failure.
 The text Reconnect breathing circuit is now displayed.
6. Connect the patient.
7. When the test is complete, verify that there is a checkmark ✔️ in the Leak test checkbox.
To cancel the test while it is in progress

- Touch Leak test again.

In case of test failure

If the test fails, \[\times\] is displayed in the Leak test checkbox.

Ensure that you have performed all steps of the test correctly. If so, perform the following checks, repeating the Leak test after each one, until the test is successful:

- Check the breathing circuit for a disconnection between the ventilator and the flow sensor, or for other large leaks (for example, breathing circuit, humidifier).

- Check that the flow sensor and expiratory valve set are properly seated.

- If the test still fails, replace the expiratory valve set.

- If the test still fails, replace the breathing circuit.

If the problem still persists, have the ventilator serviced.

5.4.3 Calibrating the adult/pediatric flow sensor

This calibration checks and resets the calibration points specific to the flow sensor in use, and measures the circuit resistance. The measured value determines the required resistance compensation during ventilation.

Ensure you are using the correct flow sensor for the selected patient group. If there is a mismatch, calibration fails.

For details about calibrating a neonatal flow sensor, see Section 6.2.1.

When to perform

After connecting a breathing circuit or component.

Flow sensor calibration involves three components:

- Flow sensor
- Component in the breathing circuit directly following the flow sensor
- Calibration adapter

To calibrate an adult/pediatric flow sensor

1. Calibrate the flow sensor in Standby, with no patient connected.

2. Connect the flow sensor to the breathing circuit (Figure 5-4).

3. Connect the next component in the circuit to the flow sensor (Figure 5-5).

Depending on your setup, this could be, for example, an HMEF, nebulizer, CO2 sensor, or the flex tube.

Do not connect any more components at this time. You will be prompted to connect the calibration adapter once the calibration process starts.
4. In the Standby window, touch Preop check.
The System > Tests & calib window is displayed.

5. Touch Flow sensor.
A help guide is shown on the display, providing an overview of the calibration process.

6. Touch Start to begin calibration.
To close the guide without starting calibration, touch Cancel.

7. When prompted on the display, attach the calibration adapter to the component connected to the flow sensor and flip all three of them together 180° so the adapter is directly connected to the breathing circuit (Figure 5-6).

8. When prompted, flip the flow sensor/component/adapter 180° again, so the flow sensor is directly connected to the breathing circuit, and remove the calibration adapter (Figure 5-7).

9. When calibration is complete, verify that there is a checkmark ✓ in the Flow sensor checkbox.

10. When successful, finish assembling the breathing circuit, and continue with other tests or ventilation.

To cancel an ongoing calibration
- Touch Flow sensor again.

In case of calibration failure
If the calibration fails, ✗ is displayed in the Flow sensor checkbox.
Ensure that you have performed all steps of the test correctly. If so, perform the following checks, repeating the calibration after each one, until calibration is successful:

- Ensure that the flow sensor is appropriate for the selected patient group.
- Check the breathing circuit for a disconnection between the ventilator and the flow sensor, or for other large leaks (for example, breathing circuit, humidifier).
- Check that the flow sensor and expiratory valve set are properly seated.
• If the calibration still fails, replace the flow sensor.
• If the calibration still fails, replace the expiratory valve membrane.
• If the calibration still fails, replace the expiratory valve set.

If the problem persists, have the ventilator serviced.

5.4.4 Calibrating the O2 sensor

CAUTION

When using an oxygen supply < 99% (HPO) or low pressure oxygen (LPO), calibrate the O2 cell at 21%. This information is displayed in the Calibration window.

NOTICE

When using LPO, disconnect the oxygen supply during calibration.

Calibrate the O2 sensor if either of the following occur:

- ✗ is displayed in the O2 sensor checkbox (Figure 5-2)
- The O2 sensor calibration needed alarm is generated.

To perform O2 sensor calibration

1. Using the information in Table 5-5, set the Oxygen control as appropriate to calibrate the sensor using either 21% or 100% oxygen.
 For example, to calibrate during active ventilation with 100% oxygen, ensure the Oxygen control is set to 22% or higher.
2. Touch System > Tests & calib.
3. Touch O2 sensor.
4. When calibration is complete, verify that there is a checkmark in the O2 sensor checkbox.

Table 5-5. Oxygen concentration during O2 sensor calibration

| Standby or active ventilation | Gas source connection status | Set Oxygen to ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100% oxygen calibration 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>HPO Connected</td>
<td>any</td>
</tr>
<tr>
<td>Active ventilation 39</td>
<td>HPO Connected</td>
<td>> 21%</td>
</tr>
</tbody>
</table>

21% oxygen calibration

When the oxygen supply is less than 99%, you must disconnect the oxygen supply before calibration.

<table>
<thead>
<tr>
<th>Standby</th>
<th>LPO Disconnected</th>
<th>21%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active ventilation</td>
<td>HPO Connected</td>
<td>21%</td>
</tr>
<tr>
<td>Active ventilation</td>
<td>LPO Disconnected</td>
<td>21%</td>
</tr>
</tbody>
</table>

38 Calibrating at 100% improves the stability of measurements at higher oxygen concentrations during use.
39 Only for adult/pediatric patients.
5.4.5 Performing a zero calibration of the CO2 sensor/adapter

Before proceeding, review the safety information in Chapter 1.

CAUTION

- Always perform zero calibration with the CO2 sensor (mainstream) or CO2 module (sidestream) connected to the airway adapter.
- Be sure NOT to cover both ends of the airway adapter with your fingers.

The CO2 adapter zero calibration compensates for optical differences between airway adapters and for sensor drift.

Note that the CO2 sensors are calibrated at the factory; you only need to zero the adapters as described next.

Zero calibration requirements for mainstream CO2 sensors

Perform a zero calibration in the following cases:

- With the first use of the sensor
- When changing between airway adapter types (for example, from single use to reusable)
- When the CO2 calibration needed alarm is generated

Zero calibration requirements for sidestream CO2 sensors

You only need to perform a zero calibration with sidestream CO2 sensors when the CO2 calibration needed alarm is generated.

To ensure all CO2 is dissipated, wait 2 minutes to perform the zero calibration after removing the adapter from the patient’s airway.

To perform the zero calibration of the CO2 sensor/adapter (mainstream) and sensor/module (sidestream)

1. Connect the CO2 adapter (1 mainstream) or the CO2 module (2 sidestream) to the CO2 port on the ventilator (Figure 5-8), and ensure CO2 monitoring is enabled.

 Wait at least 2 minutes for the device to warm up.

2. Disconnect the CO2 sensor/adapter from the breathing circuit.

 See Figures 4-4 and 4-6 for the sensor location in the breathing circuit.

3. Attach the CO2 sensor to the adapter (1 mainstream) or snap it into the CO2 module (2 sidestream) (Figure 5-9).
Keep these components away from all sources of CO2, including the patient’s and your own exhaled breath, as well as the ventilator exhaust port.

4. Touch **System > Tests & calib.**

5. Touch **CO2 sensor.**
 Do not move the components during calibration.

6. When the zero calibration is complete, verify that there is a checkmark √ in the CO2 sensor checkbox.

In case of zero calibration failure

If the zero calibration fails, × is displayed in the CO2 sensor checkbox.

Perform the following checks, repeating the zero calibration after each one, until it is successful:

- Check the airway adapter and clean if necessary.
- If the zero calibration still fails, ensure there is no source of CO2 near the airway adapter.
- If the zero calibration still fails, connect a new adapter.
- If the zero calibration still fails, connect a new CO2 sensor (mainstream) or CO2 module (sidestream).

If the problem persists, have the ventilator serviced.

5.4.6 Testing the alarms

During ventilator startup, the HAMILTON-C1 performs a self-check that also verifies proper alarm function, including generation of an audible alarm sound. You are not required to perform additional alarm tests.

If desired, you can test any adjustable alarm by manually changing the set limit such that the ventilator exceeds or fails to reach the set limit, thereby generating the associated alarm. For details on setting alarm limits, see Section 5.7.

For any tests, use a demonstration lung assembly as described in Section 5.4.1.
5.5 Selecting the ventilation mode

The active ventilation mode is displayed at the top left corner of the display together with the selected patient group.

When first starting to ventilate a patient, the mode associated with the selected Quick setup is pre-selected. You can change it, if needed.

For details about each of the modes, see Chapter 7.

To select a mode

1. Do either of the following (see Figure 5-10):
 – Touch the mode name (1) at the top left of the display.
 – Touch Modes (2) at the top right of the display.

2. In the Modes window, touch the desired mode, then touch Confirm.
 The Confirm button is only displayed after you select a different mode in the window.
 The Controls window opens.

3. Review and, if needed, adjust the control settings (Figure 5-12), then touch Confirm to enable the new mode.
 After you touch Confirm, the mode changes at the end of the current breath cycle.
 Without confirmation, the window closes after a short time and the currently active mode remains in place.
Reviewing and adjusting ventilation settings

You specify ventilation settings in the Controls window tabs: Basic, More, Apnea. The Patient tab provides access to patient data during ventilation.

Which tabs are available depends on which mode is selected, as well as whether you are in Standby or active ventilation.

In addition, the window changes slightly depending on whether you are changing settings for the active mode or you are changing modes.

To change the control settings for the active mode

1. Touch Controls, and select and adjust settings as needed. See Figure 5-12. The change takes effect immediately.

2. Touch More to enable/disable Sigh, if needed.

3. If applicable, touch Apnea and select or deselect Backup as needed.

4. If you need to change basic patient data, touch Patient and adjust settings as needed. See Section 5.3.

40 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
5.6.1 About Plimit and related pressure-control settings

The pressure limit setting (Plimit) defines the maximum allowed pressure to apply during ventilation. This setting is available in the Controls > Basic window (Figure 5-12).

Furthermore, the Plimit control setting is directly related to the high Pressure alarm limit, in that changing one of these settings automatically changes the other: The high Pressure alarm limit is always 10 cmH2O greater than Plimit.

Depending on the selected mode, the following control parameters can be used to set pressure: ΔPcontrol, ΔPinsp, ΔPsupport, or P high.

The total inspiratory pressure to be applied is defined as follows:

- ΔPcontrol + PEEP/CPAP
- ΔPsupport + PEEP/CPAP
- ΔPinsp + PEEP/CPAP
- P high\(^4\)

If the total inspiratory pressure exceeds Plimit, the ventilator only delivers pressure equal to Plimit. The ventilator cannot deliver the set pressure and the Pressure limitation alarm is generated. When this conflict occurs, the Plimit control is highlighted in yellow in the Controls window and the Check Plimit alarm is generated.

During active adjustment, you may see the pressure or Plimit controls turn yellow, indicating that total inspiratory pressure exceeds Plimit with the proposed settings. Adjust pressure-related settings to resolve the conflict.

The following examples illustrate each of these cases.

Example 1: Pressure control setting adjustments exceed Plimit

Assume the control parameters are set as follows:

\[
\begin{align*}
\text{Plimit} & = 32 \text{ cmH2O} \\
\Delta P_{\text{control}} & = 25 \text{ cmH2O} \\
\text{PEEP/CPAP} & = 5 \text{ cmH2O} \\
\text{Total inspiratory pressure} & = 30 \text{ cmH2O (}\Delta P_{\text{control}} + \text{PEEP/CPAP}\)\text{ in this example)}
\end{align*}
\]

The total inspiratory pressure of 30 cmH2O is below Plimit. The ventilator delivers the total inspiratory pressure as set.

If you increase ΔPcontrol to 30 cmH2O, the total inspiratory pressure, which is now 35 cmH2O, exceeds Plimit and the following occurs:

1. Plimit (1 in Figure 5-13) is highlighted in yellow, indicating that total inspiratory pressure exceeds Plimit
2. Either decrease the pressure control settings or increase Plimit to ensure that Plimit is equal to or greater than the total inspiratory pressure setting.

When Plimit (1 in Figure 5-17) meets this condition, it is no longer highlighted in yellow.

\(^{4}\) In DuoPAP and APRV modes, P high defines the total inspiratory pressure to be delivered. PEEP/CPAP does not need to be accounted for.
Example 2: Plimit setting adjustment is below total inspiratory pressure

Assume the control parameters are set as follows:

Plimit = 32 cmH2O
ΔPcontrol = 25 cmH2O
PEEP/CPAP = 5 cmH2O
Total inspiratory pressure = 30 cmH2O
(ΔPcontrol + PEEP/CPAP in this example)

The total inspiratory pressure of 30 cmH2O is below Plimit. The ventilator delivers the total inspiratory pressure as set.

If you decrease Plimit to 25 cmH2O, the total inspiratory pressure of 30 cmH2O exceeds Plimit and the following occurs:

1. The currently active Plimit control that you are adjusting (1 in Figure 5-15) is shown in orange.

 The pressure controls are highlighted in yellow (2) if the total inspiratory pressure exceeds Plimit, indicating there is a conflict.

2. Upon confirming the new Plimit setting, Plimit (1 in Figure 5-16) is highlighted in yellow, indicating there is a conflict. The pressure controls return to their default color.

3. Either decrease the pressure control settings or increase Plimit to ensure that Plimit is equal to or greater than the total inspiratory pressure setting.

 When Plimit (1 in Figure 5-17) meets this condition, it is no longer highlighted in yellow.
5.6.2 About Apnea backup ventilation

Before proceeding, review the safety information in Chapter 1.

The HAMILTON-C1 provides Apnea backup ventilation, a mechanism that minimizes possible patient injury due to apnea or cessation of respiration. Apnea backup is available in the following modes: APVsimv, SPONT, DuoPAP, APRV, and NIV.

Apnea backup ventilation enabled

Apnea backup provides ventilation after the apnea time passes with no breath attempts detected. The apnea time is set in the Alarms window using the Apnea time control.

When this occurs, the ventilator automatically and immediately switches into Apnea backup ventilation.

It generates a low-priority alarm, displays the alarm Apnea ventilation, and provides ventilation using the settings specified in Section 7.1.2.

When set to Automatic, the control setting for the Apnea backup mode depends on the IBW (or weight for neonates) of the patient.

To change the Apnea backup control settings

1. Touch **Controls > Apnea**.
2. Clear the **Automatic** checkbox.
 The settings controls are enabled.
3. Change the values as desired.
 The changes take effect immediately.
5.7 Setting alarm limits

Before proceeding, review the safety information in Chapters 1 and 9.

You can access the Alarms window and change alarm settings at any time, without affecting ventilation.

Apnea backup ventilation disabled

When Apnea backup is disabled, the high-priority Apnea alarm is generated when apnea occurs and there is no patient trigger within the operator-set interval.

42 Not available during neonatal ventilation.
43 Not available in all markets.
To review and adjust alarms

1. Either touch the Alarms button or touch an MMP on the left of the display.
 The Alarms > Limits 1 window is displayed (Figure 5-19).

2. To set an alarm limit individually, touch the alarm control and adjust the value.
 Repeat for any other alarm.

3. Access additional alarm settings by touching the Limits 2, and if used, Limits 3 tabs.

 The ventilator displays 🚨 (Alarm Off symbol) when an alarm limit is set to Off.
 For details about the Oxygen alarm limits, see Section 5.7.1.

4. To set alarm limits automatically, touch Auto in the Limits 1 window.
 Selecting Auto automatically sets alarm limits around the current monitoring parameter values except for the Vt and Apnea alarm limits. These alarm limits remain unchanged, and must be set manually to the desired level.
 Note that some automatic settings are not appropriate under all clinical conditions. Check the validity of the settings as soon as possible.

5. Close the window.

The following table briefly describes each of the adjustable ventilator alarms. Additional details are available in Table 15-12.

For SpO2-related alarms, see the Pulse Oximetry Instructions for Use.

43 Not available during neonatal ventilation.
44 SpO2-related alarms are also not automatically set.
Table 5-6. Adjustable alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea time</td>
<td>The maximum time allowed from the beginning of one inspiration to the beginning of the next inspiration. If the patient does not trigger a breath during this time:</td>
</tr>
<tr>
<td></td>
<td>• A low-priority alarm sounds if Apnea backup is enabled. Apnea ventilation begins.</td>
</tr>
<tr>
<td></td>
<td>• A high-priority alarm sounds if Apnea backup is disabled</td>
</tr>
<tr>
<td></td>
<td>Not applicable in nCPAP or nCPAP-PC modes, or during HiFlowO2.</td>
</tr>
<tr>
<td>ExpMinVol (low and high)</td>
<td>Low and high expiratory minute volume. If either limit is reached, a high-priority alarm is generated.</td>
</tr>
<tr>
<td></td>
<td>Not applicable in nCPAP or nCPAP-PC modes.</td>
</tr>
<tr>
<td></td>
<td>For alarm details when using a speaking valve, see Table 10-1.</td>
</tr>
<tr>
<td></td>
<td>During CPR ventilation, alarm limits are automatically set to their minimum and maximum allowed limits. See Table 15-12.</td>
</tr>
<tr>
<td>Flow</td>
<td>Only active in nCPAP and nCPAP-PC modes. The High Flow alarm is generated when the limit is reached.</td>
</tr>
<tr>
<td>fTotal (low and high)</td>
<td>Low and high monitored total breath rate (fTotal), including both spontaneous and mandatory breaths. If either limit is reached, a medium-priority alarm is generated.</td>
</tr>
<tr>
<td></td>
<td>Not applicable in nCPAP or nCPAP-PC modes.</td>
</tr>
<tr>
<td></td>
<td>During CPR ventilation, alarm limits are automatically set to their minimum and maximum allowed limits. See Table 15-12.</td>
</tr>
<tr>
<td>Oxygen (low and high)</td>
<td>Low and high monitored oxygen concentration (Oxygen). If either limit is reached, a high-priority alarm is generated.</td>
</tr>
<tr>
<td></td>
<td>Applies only when low-pressure oxygen is used or the Set Oxygen alarm limits manually checkbox is selected with HPO.</td>
</tr>
<tr>
<td>PetCO2 (low and high)</td>
<td>Low and high monitored PetCO2. If either limit is reached, a medium-priority alarm is generated.</td>
</tr>
<tr>
<td></td>
<td>During CPR ventilation, alarm limits are automatically set to their minimum and maximum allowed limits. See Table 15-12.</td>
</tr>
</tbody>
</table>
Specifying ventilation settings

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (low and high)</td>
<td>Low and high monitored pressure at the patient airway (Ppeak). If the high Pressure limit is reached or the device fails to reach the low Pressure limit, a high-priority alarm is generated. When pressure reaches the Plimit setting (high Pressure limit minus 10 cmH2O), inspiratory pressure is limited to this setting; the pressure is not increased further. If the delivered pressure is the same as the set high Pressure alarm limit, the device aborts the breath and reduces the pressure to PEEP level. Sigh breaths are an exception to this rule. In this case, the ventilator may apply inspiratory pressure up to 3 cmH2O below the high Pressure alarm limit.</td>
</tr>
<tr>
<td>Vt (low and high)</td>
<td>Low and high expiratory tidal volume, for two consecutive breaths. If either limit is reached, a medium-priority alarm is generated. When the delivered Vt is > 1.5 times the set upper Vt alarm limit, the Inspiratory volume limitation alarm is generated. In this case, the device aborts the breath and reduces the pressure to PEEP level. The APV controls reduce the pressure for the next breath by 3 cmH2O. During CPR ventilation, alarm limits are automatically set to their minimum and maximum allowed limits. See Table 15-12.</td>
</tr>
</tbody>
</table>
5.7.1 About the Oxygen alarm limits

How the device sets the Oxygen alarm limits depends on the gas source used (LPO or HPO) and associated option settings.

Oxygen alarm limits are set as follows:

Table 5-7. Setting Oxygen alarm limits in LPO and HPO modes

<table>
<thead>
<tr>
<th>Gas source</th>
<th>Setting Oxygen alarm limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPO</td>
<td>Always manually. The Oxygen alarm limit controls are enabled in the Alarms window and are manually adjusted, as appropriate.</td>
</tr>
<tr>
<td>HPO</td>
<td>By default, automatically. The Oxygen high/low alarms are, by default, automatically set to the current Oxygen setting ± 5 (absolute value). The Oxygen alarm limit controls are disabled in the Alarms window. To set them manually, select the Set Oxygen alarm limits manually option, as described next.</td>
</tr>
</tbody>
</table>

The minimum lower alarm limit is 18%.

Setting the oxygen alarm limits manually reduces the alarms, for example, when using an oxygen supply < 99%.

To enable manual adjustment of Oxygen alarm limits in HPO mode

1. Touch **Tools > Utilities**.
2. Select HPO mode as the gas source.
3. To set the Oxygen alarm limits yourself, touch the Set Oxygen alarm limits manually checkbox. When selected, the Oxygen alarm limit controls are enabled in the Alarms window. You can now set the limits as desired.
4. To have the limits set automatically, ensure the checkbox is clear.

Figure 5-20. Setting Oxygen alarm limits manually with HPO

1. Tools
2. Utilities
3. Gas source: HPO mode
4. Set Oxygen alarm limits manually checkbox selected
5.8 Starting ventilation

Before starting ventilation, review the patient information in the Standby window and ensure it is correct.

To start ventilation

- Do one of the following:
 - In Standby, press the Power/Standby key.
 - In Standby, touch **Start ventilation**.
 - Using the P&T knob, move the cursor to the **Start ventilation** button, and press the P&T knob.

When using HiFlowO2, the button is labeled **Start therapy**.

When CPR ventilation is on, the button is labeled **Start CPR**.

Ventilation starts.

5.9 Stopping ventilation (Standby)

WARNING

When in Standby, the ventilator does not automatically resume ventilation when the patient is reconnected. You must manually restart ventilation.

NOTICE

- Patient alarms are suppressed in Standby.
- Acoustic patient alarms are suppressed for 1 minute after starting ventilation from Standby.

Standby is a waiting mode that lets you maintain ventilator settings while the ventilator is not performing any ventilatory functions.

To stop ventilation and place the ventilator in Standby

1. Press and quickly release (Power/Standby) while the ventilator is turned on (Figure 10-2).
 The Activate Standby window opens (Figure 5-21).

2. Touch **Activate standby**.
 The Standby window opens (Figure 5-22).

While in Standby, the window shows the elapsed time the ventilator has been in Standby.

Note that, if another window is open on the display, the elapsed time appears in a small yellow box on the left side of the Standby window.

Figure 5-21. Activate Standby window
5.10 About the control parameters

Table 5-8 provides a brief description of the ventilator’s control parameters, also referred to as control settings. You can review and adjust these settings in various locations, depending on their function.

Table 15-8 in the Specifications chapter provides the control parameter ranges and default settings, including accuracy.

For a comparison of Hamilton Medical ventilation-related terminology with ISO 19223:2019, see Section 15.5.

To end Standby and start ventilation

- Do either of the following:
 - Touch Start ventilation.
 - Press and quickly release.

Ventilation resumes with the previous settings.

To enter Standby and stop ventilation

1. Press the Power/Standby key.
2. In the confirmation window, touch Activate standby.

The device enters Standby (Figure 5-1). The yellow counter shows the time elapsed in Standby.

46 When HiFlowO2 is selected: Start therapy; when CPR ventilation is on: Start CPR.
Table 5-8. Control parameters, defined

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%MinVol</td>
<td>Percentage of minute volume to be delivered in ASV mode. The ventilator uses the %MinVol, Pat. height, and sex settings to calculate the target minute ventilation. Add 20% per degree of body temperature > 38.5°C (101.3°F).</td>
</tr>
<tr>
<td>Apnea backup</td>
<td>A function that provides ventilation after the adjustable apnea time passes without breath attempts. If Automatic is enabled, control parameters are calculated based on the patient’s IBW (Adult/Ped patient group) or Weight (Neonatal patient group). Applies in APVsivm, SPONT, DuoPAP, APRV, and NIV modes. Be sure to review the safety information in Chapter 1.</td>
</tr>
<tr>
<td>ETS</td>
<td>ETS (expiratory trigger sensitivity) is the percent of peak inspiratory flow at which the ventilator cycles from inspiration to exhalation. Increasing the ETS setting results in a shorter inspiratory time. The ETS setting lets you match the inspiratory time of pressure-supported breaths to the patient’s neural timing.</td>
</tr>
<tr>
<td>Flow</td>
<td>In HiFlowO2, Flow is the continuous and constant flow of medical gas to the patient in liters per minute.</td>
</tr>
<tr>
<td>Flow trigger</td>
<td>The patient’s inspiratory flow that triggers the ventilator to deliver a breath. Set to OFF when CPR ventilation is on. See Section 10.9.</td>
</tr>
<tr>
<td>HAMILTON-H900 related parameters</td>
<td>Displayed when a HAMILTON-H900 humidifier is connected and the option is installed. See Section 11.1.7.</td>
</tr>
<tr>
<td>I:E</td>
<td>Ratio of inspiratory time to expiratory time. Applies to mandatory breaths, and in APVsivm/APVcmv and PCV+ modes.</td>
</tr>
<tr>
<td>IBW</td>
<td>Ideal body weight. A calculated value using height and sex, used in calculations for ASV and startup ventilation settings for adult and pediatric patients.</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Oxygen concentration to be delivered. Applies to all breaths and during HiFlowO2.</td>
</tr>
</tbody>
</table>

47 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
About the control parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P high</td>
<td>The high pressure setting in APRV and DuoPAP modes. Absolute pressure, including PEEP.</td>
</tr>
<tr>
<td>P low</td>
<td>The low pressure setting in APRV mode.</td>
</tr>
<tr>
<td>Pat. height</td>
<td>Patient height. Used to compute ideal body weight (IBW) for adult and pediatric patients.</td>
</tr>
<tr>
<td>PEEP/CPAP</td>
<td>Positive end expiratory pressure and continuous positive airway pressure, baseline pressures applied during the expiratory phase. Applies to all breaths, except in APRV mode and with HiFlowO2.</td>
</tr>
<tr>
<td>Plimit</td>
<td>The maximum allowed pressure to apply during ventilation. Does not apply in nCPAP and nCPAP-PC modes, with Sigh breaths, or in HiFlowO2. Changing Plimit or the high Pressure alarm limit automatically changes the other: the high Pressure alarm limit is always 10 cmH2O greater than Plimit. When adjusting the pressure controls, the ventilator indicates when the total inspiratory pressure (including PEEP/CPAP) exceeds Plimit. For details, see Section 5.6.1. In ASV mode, Plimit must be at least 15 cmH2O above PEEP/CPAP for the ASV controller to function correctly.</td>
</tr>
</tbody>
</table>
| P-ramp | Pressure ramp. The rate at which pressure rises to meet the set value. The P-ramp setting lets you fine-tune the initial flow output during a pressure-controlled or pressure-supported breath to match the ventilator flow to the patient’s demand. Applies to all breaths. Notes:
 - Short P-ramp settings (0 to 50 ms) provide higher initial flow rates and result in faster attainment of the target pressure. This may benefit patients with elevated respiratory drive.
 - Shorter P-ramp values have been correlated with reduced work of breathing in certain patients.
 - Setting the P-ramp too low, especially in combination with a small ET tube (high resistance), may result in a noticeable pressure overshoot during the early stage of inspiration and generation of a Pressure limitation alarm.
 - Setting the P-ramp too high may prevent the ventilator from attaining the set inspiratory pressure. A square (rectangular) pressure profile is the goal.
 - P-ramp is not available during CPR ventilation. |

Hamilton Medical | HAMILTON-C1 Operator’s Manual
109
Specifying ventilation settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>Respiratory frequency or number of breaths per minute.</td>
</tr>
<tr>
<td>Sex(^{47})</td>
<td>Sex of patient. Used to compute ideal body weight (IBW) for adult and pediatric patients.</td>
</tr>
</tbody>
</table>
| Sigh\(^{47}\) | When Sigh is activated, every 50th breath is applied using one of the following settings:
- In pressure-controlled modes, the pressure delivered is > 10 cmH2O above the currently set Pcontrol or Pinsp.
- In volume-controlled modes, the tidal volume delivered is 150% of the current tidal volume (Vt) setting.

 During Sigh breaths, the Pressure and Vt alarm limits remain in effect to help protect the patient from excessive pressures and volumes.

 Not available for neonatal patients, in DuoPAP or APRV modes, or with HiFlowO2. |
| T high | Length of time at the higher pressure level, P high, in DuoPAP and APRV modes. |
| T low | Length of time at the lower pressure level, P low, in APRV mode. |
| TI | Inspiratory time, the length of time to deliver gas for inspiration at the Pcontrol or Vt setting. Used with Rate to set the breath cycle time.

 Applies in PCV+, APVcmv, APVsimv, PSIMV+, NIV-ST, and nCPAP-PC modes.

 In PCV+ and APVcmv modes, TI can be controlled by Rate and TI or by the I:E ratio (set in Configuration). All other modes are controlled by Rate and TI. |
Parameter Definitions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
</table>
| TI max | Maximum inspiratory time for flow-cycled breaths in the following modes:
 - NIV and NIV-ST: All patient groups
 - APVsimv, PSIMV+, DuoPAP, and SPONT: Neonatal patient group |
| | In Configuration, you can enable the TI max control setting for the following modes:
 - APVsimv, PSIMV+, DuoPAP, and SPONT: Adult/Ped patient group |

For all patient groups, the switchover from inspiration to exhalation in spontaneous breaths is normally controlled by the ETS setting. If gas leakage is significant, however, the set cycle may never be reached. The TI max setting provides a backup so inspiration can be terminated. The ventilator switches over to exhalation when the set TI max is reached. When speaking valve compatibility is activated (ON), the TI max control setting is available in PSIMV+ and SPONT modes, in the Controls > More window regardless of whether it is enabled in Configuration.

Vt/kg	Tidal volume per weight.
Vt	Tidal volume delivered during inspiration in APVcmv and APVsimv modes.
Weight	Actual body weight. Used only with neonates.
ΔPcontrol	The pressure (additional to PEEP/CPAP) to apply during the inspiratory phase in PCV+ and PSIMV+ modes.
ΔPinsp	Pressure (additional to PEEP/CPAP) to apply during the inspiratory phase. Applies in PSIMV+ PSync and NIV-ST modes.
ΔPsupport	Pressure support for spontaneous breaths in SPONT, NIV, APVsimv, PSIMV+, and DuoPAP modes. It is the pressure (additional to PEEP/CPAP) to apply during the inspiratory phase.
Pressure support helps the patient counteract the flow resistance of the breathing circuit and endotracheal tube. It compensates for the decreasing tidal volume and rising respiratory rate of a spontaneously breathing patient. |
5 Specifying ventilation settings
6

Specifying neonatal settings

6.1 Setting up for neonatal ventilation .. 114
6.2 Performing the preoperational check, tests, and calibrations 117
6.3 Selecting the ventilation mode .. 120
6.4 Setting the patient weight for ventilation 120
6.5 Alarms for neonatal ventilation .. 120
6.6 O2 enrichment for neonates .. 120
6.1 Setting up for neonatal ventilation

Before proceeding, review the safety information in Chapter 1.

Setting up for neonatal ventilation comprises the following steps:

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the ventilator, select the patient group and specify weight.</td>
<td>Section 6.1.1</td>
</tr>
<tr>
<td>Install the expiratory valve.</td>
<td>Section 3.5.2</td>
</tr>
<tr>
<td>Select and assemble the appropriate breathing circuit and components.</td>
<td>Section 6.1.2</td>
</tr>
<tr>
<td>Adjust the position of the breathing circuit.</td>
<td>Section 6.1.2.6</td>
</tr>
<tr>
<td>Connect external devices.</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Perform the preoperative check and any required tests and calibrations.</td>
<td>Sections 6.2 and 5.4</td>
</tr>
<tr>
<td>Select the ventilation mode.</td>
<td>Sections 6.3 and 5.5</td>
</tr>
</tbody>
</table>

6.1.1 Setting the patient group and weight

CAUTION

Entering the correct patient data ensures safe ventilation settings for start up, Apnea backup, and safety ventilation.

You select the patient group and weight in the **Standby** window when first setting up the ventilator for the patient.

You can edit this information during ventilation, if needed, in the **Patient** window.

Figure 6-1. Neonatal Standby window

When HiFlowO2 is selected: Start therapy; when CPR ventilation is on: Start CPR.
To select the patient group

1. In the Standby window, touch the Neonatal tab. See Figure 6-1.
2. Touch the appropriate Quick setup button.
 By default, they are labeled Neonatal 1, Neonatal 2, and Neonatal 3. The Quick setup names and settings are defined in Configuration. For details, see Section 5.2.1.
3. Touch the Weight control and set the patient’s body weight.
 By default, the weight is set to 2 kg.

You can now select the ventilation mode, if the desired mode is not already selected.

6.1.2 Setting up the patient breathing circuit

Setting up a neonatal breathing circuit comprises the following steps:

Table 6-1. Assembling the breathing circuit

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select the components</td>
<td>Section 6.1.2.1</td>
</tr>
<tr>
<td>Connect the breathing circuit</td>
<td>Section 6.1.2.2</td>
</tr>
<tr>
<td>Connect the flow sensor</td>
<td>Section 6.1.2.4</td>
</tr>
<tr>
<td>Connect the pressure line</td>
<td>Section 6.1.2.5</td>
</tr>
<tr>
<td>(nCPAP, nCPAP-PC modes)</td>
<td></td>
</tr>
<tr>
<td>Position the circuit</td>
<td>Section 6.1.2.6</td>
</tr>
</tbody>
</table>

6.1.2.1 Selecting the breathing circuit components

Select the correct breathing circuit and components for your patient from Table 6-2.

Table 6-2. Neonatal breathing circuit part specifications

<table>
<thead>
<tr>
<th>Patient group/Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient group</td>
<td>Neonatal</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.2 to 30</td>
</tr>
<tr>
<td>Breathing circuit tube ID (mm)</td>
<td>10 to 12</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>Neonatal</td>
</tr>
<tr>
<td>Pressure line</td>
<td>Neonatal</td>
</tr>
<tr>
<td>CO2 airway adapter</td>
<td>Neonatal</td>
</tr>
</tbody>
</table>

6.1.2.2 Connecting the neonatal breathing circuit

Figures 2-9 through 2-11 in Chapter 2 show typical neonatal breathing circuit configurations.

6.1.2.3 Working with the expiratory valve

The process is the same as for adult and pediatric patients. See Section 3.5.2.
6.1.2.4 Connecting the neonatal flow sensor

Note the following:

- Use a Hamilton Medical neonatal flow sensor to ventilate your neonatal patient.
- Do not use an adult/pediatric flow sensor.
- The neonatal flow sensor adds 1.3 ml of dead space.

To connect the neonatal flow sensor

1. For all modes except nCPAP and nCPAP-PC, connect a flow sensor between the Y-piece of the breathing circuit and the patient connection. See Figure 6-2.

When using the nCPAP and nCPAP-PC modes, remove the flow sensor and use the pressure-monitoring line with the breathing circuit (Section 6.1.2.5). Note that during calibration you place the flow sensor proximal to the patient.

HiFlowO2 does not require the use of a flow sensor.

2. Connect the blue and clear tubes to the flow sensor connection ports on the ventilator.

The blue tube attaches to the blue connection port. The clear tube attaches to the white connection port.

3. Calibrate the flow sensor and perform the Leak test. See Section 6.2.

Figure 6-2. Connect flow sensor between the Y-piece and patient interface

6.1.2.5 Connecting the pressure-monitoring line

Use the pressure line with the breathing circuit when using the nCPAP or nCPAP-PC modes. Do not use a flow sensor.

The pressure is measured by a built-in T-piece adapter in the inspiratory line, close to the patient, or (if available) over the optional pressure measuring connection at the Y-piece of the breathing circuit.

Figure 6-3. Connecting the pressure line
To connect the pressure-monitoring line

1. Using an adapter, connect the pressure line to the small inlet at the top of the T- or Y-piece, whichever is used. See Figure 6-3.
2. Connect the pressure line to the blue flow sensor connection port on the ventilator.
3. Calibrate the breathing circuit and perform the Leak test.

6.1.2.6 Positioning the breathing circuit

After assembly, position the breathing circuit so that the hoses will not be pushed, pulled, or kinked as a result of a patient’s movement, transport, or other activities, including scanner bed operation and nebulization.

6.2 Performing the preoperational check, tests, and calibrations

Before proceeding, review the safety information in Chapter 1.

The following sections in this chapter provide information that is specific to neonatal ventilation, and is intended as a supplement to the information provided in Chapter 5.

For details about when to perform the tests, and about the full preoperational check process, see Section 5.4.

When to perform

Before connecting a new patient to the ventilator.

To perform the preoperational check

1. Use a setup as described in Table 6-3.
2. Perform all of the steps in Table 6-4.

To ensure that the ventilator functions according to specifications on your patient, perform the preoperational check using the breathing circuit that will be used on the patient.

Table 6-3: Test breathing circuit setup

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing circuit</td>
<td>Neonatal, ID10 to ID12</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>Neonatal, with calibration adapter</td>
</tr>
<tr>
<td>Pressure line</td>
<td>For use in nCPAP and nCPAP-PC modes</td>
</tr>
<tr>
<td>Test lung</td>
<td>Neonatal, with neonatal ET tube between flow sensor and lung model (an IngMar neonatal lung model is recommended)</td>
</tr>
</tbody>
</table>

Table 6-4: Preoperational check, overview

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform the preoperational check</td>
<td>Section 5.4 in Chapter 5</td>
</tr>
<tr>
<td>Perform the Leak test</td>
<td>Section 5.4.2 in Chapter 5</td>
</tr>
<tr>
<td>Calibrate the neonatal flow sensor</td>
<td>Section 6.2.1</td>
</tr>
<tr>
<td>In nCPAP modes, calibrate the breathing circuit</td>
<td>Section 6.2.2</td>
</tr>
<tr>
<td>Perform other calibrations, as needed</td>
<td>Section 5.4 in Chapter 5</td>
</tr>
</tbody>
</table>
6.2.1 Calibrating the neonatal flow sensor

Calibrate the flow sensor after connecting a new flow sensor or whenever the Flow sensor calibration needed alarm is generated.

A flow sensor is required for all modes except nCPAP or nCPAP-PC modes or when using HiFlowO2. Before proceeding, ensure you have the calibration adapter available.

To calibrate a neonatal/pediatric flow sensor

1. Calibrate the flow sensor in Standby, with no patient connected.
2. Make sure that the Neonatal patient group is selected, a neonatal flow sensor is connected, and the calibration adapter is available.
3. Set up the ventilator for ventilation, connecting the flow sensor to the Y-piece.
4. In the Standby window, touch Preop check. The System > Tests & calib window is displayed.
5. Touch Flow sensor.
6. When prompted on the display, attach the calibration adapter to the patient end of the flow sensor (Figure 6-4).
7. When prompted, flip the flow sensor and calibration adapter together 180° so the adapter is directly connected to the Y-piece (Figure 6-5).
8. When prompted, flip the flow sensor/adapter 180° again, so the flow sensor is directly connected to the Y-piece, and remove the calibration adapter (Figure 6-6).
9. When calibration is complete, verify that there is a checkmark in the Flow sensor checkbox.
10. When successful, continue with other tests or ventilation.

To cancel an ongoing calibration

- Touch Flow sensor again.
In case of calibration failure

If the calibration fails, a red X is displayed in the Flow sensor checkbox.

Perform the following checks, repeating the calibration after each one, until calibration is successful:

- Ensure that the flow sensor is appropriate for the selected patient group.
- Check the breathing circuit for a disconnection between the ventilator and the flow sensor, or for other large leaks (for example, breathing circuit, humidifier).
- Check that the correct flow sensor is connected, and that the flow sensor and expiratory valve/membrane are properly seated.
- If the calibration still fails, replace the flow sensor.
- If the calibration still fails, replace the expiratory valve membrane.
- If the calibration still fails, replace the expiratory valve set.

If the problem persists, have the ventilator serviced.

6.2.2 Calibrating the neonatal breathing circuit (nCPAP and nCPAP-PC modes)

The nCPAP and nCPAP-PC modes use a pressure line in the breathing circuit to measure the inspiratory pressure. Do not use a flow sensor.

This calibration ensures that the breathing circuit resistance compensation is accurate.

To calibrate the circuit with the pressure line

1. Touch System > Tests & calib.
2. Touch Circuit.

 If you have not already disconnected the patient, the text Disconnect patient is displayed.
3. Disconnect patient as follows:
 - If using a Y-piece, disconnect the breathing circuit from the patient.
 - If using a T-piece, disconnect the interface from the patient.
4. Follow the instructions displayed in the message line.
5. When calibration is complete, verify that there is a checkmark in the Circuit checkbox.
6. When successful, continue with other tests or ventilation.

To cancel an ongoing calibration

- Touch Circuit again.
6.4 Setting the patient weight for ventilation

For neonates, the ventilator uses actual body weight (instead of a calculated IBW), set in the Weight control.

Specifying the correct weight is particularly important as the ventilator uses this data as the basis for some calculations and mode control settings. By default, neonatal weight is set to 2 kg.

To set up the patient, see Section 6.1.1.

6.5 Alarms for neonatal ventilation

Note that the following adjustable alarms use patient Weight to set the initial alarm limits:
- Tidal volume, high and low (Vt)
- Minute volume, high and low (ExpMinVol)

Be sure to set the correct patient Weight in the Standby window before starting ventilation. See Section 6.1.1.

6.6 O2 enrichment for neonates

The applied oxygen concentration during the enrichment maneuver is increased to 125% of the current Oxygen setting.

For additional details on performing O2 enrichment, see Chapter 10.

6.3 Selecting the ventilation mode

The neonatal modes available on the ventilator are either pressure controlled or adaptive (pressure regulated and volume targeted).

Note that the ventilator generates a continuous and constant base flow from the inspiratory outlet to the expiratory outlet during the later part of exhalation.

The base flow is set to a fixed 4 l/min for neonatal patients.

For the list of supported modes and details about each one, see Chapter 7.

To select the ventilation mode

- See Section 5.5.
7 Ventilation modes

7.1 Overview...122
7.2 Volume-targeted modes, adaptive pressure control125
7.3 Pressure-controlled modes ...128
7.4 Intelligent Ventilation ..135
7.5 Noninvasive modes ..137
7.6 Special conditions ..143
7.7 Working with noninvasive modes ...145
7.8 Working with ASV ..148
7.1 Overview

The HAMILTON-C1 offers a full range of ventilation modes that provide full and partial ventilatory support.

The primary aims of mechanical ventilation are:

- Elimination of CO₂
- Oxygenation
- Decreased work of breathing
- Patient synchronization

The detailed mode descriptions provided in this chapter illustrate how the controls work to achieve these goals.

For a comparison of Hamilton Medical ventilation-related terminology with ISO 19223:2019, see Section 15.5.

7.1.1 Breath types and timing options

Hamilton Medical ventilators support two main breathing methods: mandatory breaths and spontaneous breaths.

Mandatory breaths. The start of inspiration (triggering) is determined by the ventilator or the patient. The end of inspiration (cycling) is determined by the ventilator.

Spontaneous breaths. The start of inspiration (triggering) and end of inspiration (cycling) is determined by the patient. The patient breathes independently or receives support from the ventilator.

The ventilator controls mandatory breath timing using a combination of inspiratory time (TI) and Rate.

For some modes, you can set the ventilator to use any of the following combinations to control breath timing: I:E or TI.

To select the breath timing to use, see Section 13.4.1.

Figure 7-1. Breath timing parameters

Note that in the breath patterns shown in this chapter, we show I:E. What is actually displayed on your device depends on the breath timing selection on the ventilator.

7.1.2 Ventilation modes

The choice of mode is a medical decision that depends on the patient’s CO₂ elimination, oxygenation, activity, and breathing effort.

A ventilation mode combines breath type, breath sequence, and control variables.

The following tables provide an overview of the available ventilation modes.
Table 7-1. HAMILTON-C1 ventilation modes, description and applicable patient group

<table>
<thead>
<tr>
<th>Mode name</th>
<th>Patient group</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume-targeted modes, adaptive pressure controlled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APVcmv / (S)CMV+</td>
<td>All</td>
<td>Breaths are volume targeted and mandatory.</td>
</tr>
<tr>
<td>APVsimv / SIMV+</td>
<td>All</td>
<td>Volume-targeted mandatory breaths can be alternated with pressure-supported spontaneous breaths.</td>
</tr>
<tr>
<td>Pressure-controlled modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCV+</td>
<td>All</td>
<td>All breaths, whether triggered by the patient or the ventilator, are pressure-controlled and mandatory.</td>
</tr>
<tr>
<td>PSIMV+</td>
<td>All</td>
<td>Mandatory breaths are pressure controlled. Mandatory breaths can be alternated with pressure-supported spontaneous breaths.</td>
</tr>
<tr>
<td>DuoPAP</td>
<td>All</td>
<td>Mandatory breaths are pressure controlled. Spontaneous breaths can be triggered at both pressure levels.</td>
</tr>
<tr>
<td>APRV</td>
<td>All</td>
<td>Spontaneous breaths can be continuously triggered. The pressure release between the levels contributes to ventilation.</td>
</tr>
<tr>
<td>SPONT</td>
<td>All</td>
<td>Every breath is spontaneous, with or without pressure-supported spontaneous breaths.</td>
</tr>
<tr>
<td>Intelligent ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASV49</td>
<td>Adult/Ped</td>
<td>Operator sets %MinVol, PEEP, and Oxygen. Frequency, tidal volume, pressure, and I:E ratio are based on physiological input from the patient.</td>
</tr>
<tr>
<td>Noninvasive modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIV</td>
<td>All</td>
<td>Every breath is spontaneous.</td>
</tr>
<tr>
<td>NIV-ST</td>
<td>All</td>
<td>Every breath is spontaneous as long as the patient is breathing above the set rate. A backup rate can be set for mandatory breaths.</td>
</tr>
<tr>
<td>nCPAP</td>
<td>Neonatal</td>
<td>Demand flow Nasal Continuous Positive Airway Pressure.</td>
</tr>
<tr>
<td>nCPAP-PC</td>
<td>Neonatal</td>
<td>Breaths are pressure controlled and mandatory.</td>
</tr>
</tbody>
</table>

49 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
<table>
<thead>
<tr>
<th>Mode type</th>
<th>Mode</th>
<th>Timing</th>
<th>Vol targeted, adaptive press. control</th>
<th>Pressure controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noninvasive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIV</td>
<td>nCPAP</td>
<td>Rate</td>
<td>R-Ratio</td>
<td>T-low</td>
</tr>
<tr>
<td>NIV-ST</td>
<td>nCPAP**</td>
<td>Rate</td>
<td>R-Ratio</td>
<td>T-low</td>
</tr>
<tr>
<td>NIV</td>
<td>nCPAP</td>
<td>Rate</td>
<td>R-Ratio</td>
<td>T-low</td>
</tr>
<tr>
<td>Pressure controlled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APRV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuopAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV+APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv+APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuoPAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APRV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSIMV+APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APV+Simv+APV+Simv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NA: Not applicable to this mode
- *: Infant Only
- **: Neonatal only
- ***: Adult/Ped only
- X: Applies to this mode
7.2 Volume-targeted modes, adaptive pressure control

The following modes are volume targeted, with adaptive pressure control:

- APVcmv / (S)CMV+
- APVsImv / SIMV+
- VS

In this manual, we refer to the APV modes using the APVcmv / APVsImv nomenclature. You can select the format to use in Configuration (Section 13.4.2).

NOTICE

- The minimum inspiratory pressure (Ppeak – PEEP) in APVcmv and APVsImv modes is 5 cmH2O. Be aware that a small set tidal volume with high lung compliance may lead to higher-than-expected tidal volumes.

- Ensure Plimit is set appropriately for adaptive modes. This setting provides a safety pressure limit for the device to appropriately adjust the inspiratory pressure necessary to achieve the target tidal volume.

 The maximum available inspiratory pressure (Plimit), is indicated by a blue line on the pressure waveform display.

 If Plimit is set too low, there may not be enough margin for the device to adjust its inspiratory pressure to deliver the target tidal volume.
7.2.1 APVcmv / (S)CMV+ mode

APVcmv stands for *adaptive pressure ventilation with controlled mandatory ventilation*. This mode is also called *(S)CMV+*, which stands for *synchronized controlled mandatory ventilation*.

APVcmv is a volume-targeted pressure-controlled ventilation mode. It functions similarly to the conventional volume-controlled mode of ventilation, *(S)CMV*, except that pressure is the control variable rather than flow. Pressure is adjusted between breaths to achieve the target tidal volume.

The breath can be triggered by the ventilator or by the patient. If the breath is triggered by the patient, the inspiratory rate may increase.

The ventilator uses the Plimit setting (high Pressure alarm limit minus 10 cmH2O) as a safety boundary for its inspiratory pressure adjustment, and does not exceed this value. An exception is Sigh breaths\(^{50}\), when the ventilator may apply inspiratory pressures 3 cmH2O below the high Pressure alarm limit.

Breaths in APVcmv mode are volume-targeted and mandatory, delivered at the lowest possible pressure depending on lung conditions.

The operator sets the target tidal volume (Vt).

The ventilator delivers the set target volume (Vt) at a preset rate. The patient can trigger mandatory breaths between preset rate breaths.

\(^{50}\) Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.

\(^{51}\) Depending on the selected breath timing philosophy.
7.2.2 APVsimmv / SIMV+ mode

APVsimmv stands for adaptive pressure ventilation with synchronized intermittent mandatory ventilation. This mode is also called SIMV+, synchronized intermittent mandatory ventilation plus.

The APVsimmv mode combines attributes of the APVcmv and SPONT modes, delivering volume-targeted mandatory breaths or pressure-supported spontaneous (patient-triggered) breaths.

APVsimmv mode ensures that the set target volume is delivered during the mandatory breaths.

After the mandatory breath is delivered, the patient is free to take any number of spontaneous breaths for the remainder of the APV breath interval.

The ventilator uses the Plimit setting (high Pressure alarm limit minus 10 cmH2O) as a safety boundary for its inspiratory pressure adjustment, and does not exceed this value. An exception is Sigh breaths, when the ventilator may apply inspiratory pressures 3 cmH2O below the high Pressure alarm limit.

Each breath interval includes mandatory time (Tmand) and spontaneous time (Tspont).

- If the patient triggers a breath during Tmand, the ventilator immediately delivers a mandatory breath.
- If the patient triggers a breath during Tspont, the ventilator delivers a spontaneous pressure-supported breath.

If the patient does not trigger a breath during Tspont, the ventilator automatically delivers a mandatory breath at the end of Tmand.

In this mode, parameters for both mandatory and spontaneous breath types are set.

- The tidal volume (Vt) setting defines the delivered volume of mandatory breaths.
- Rate and I:E define the timing of the breath cycle for mandatory breaths.
- For spontaneous breaths, ΔPsupport defines the pressure support above PEEP.
- ETS affects the inspiratory timing of the supported breaths. The inspiratory time can also be limited by TI max.

52 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
53 TI max is only available for adult/pediatric patients if it is enabled in Configuration (Section 13.4.4). It is always available for neonates.
Ventilation modes

7.3 Pressure-controlled modes

The following modes are pressure-controlled:

- PCV+
- PSIMV+
- PSIMV+ with PSync
- DuoPAP
- APRV
- SPONT

Figure 7-3. APVsimv / SIMV+: Breathing pattern and controls

Ventilator controls

CO2 elimination

1. Vt
2. Rate

Sigh\(^{52}\) (*not shown*)

Oxygenation

3. PEEP
4. I:E\(^{54}\)

Oxygen (*not shown*)

Patient synchronization

6. P-ramp
7. Trigger

\(^{54}\) Depending on the selected breath timing philosophy.
7.3.1 PCV+ mode

PCV+ stands for pressure-controlled ventilation.

Breaths in PCV+ mode are pressure controlled and mandatory.

The ventilator delivers a constant level of pressure, so the volume depends on the pressure settings, the inspiration time, and the resistance and compliance of the patient’s lungs.

In PCV+ mode, parameters are set only for mandatory breaths.

- The pressure control (ΔPcontrol) setting defines the applied pressure above PEEP.
- Rate and I:E define the timing of the breath cycle.
- The P-ramp setting controls the speed with which the ventilator arrives at the desired pressure.

This mode is available for use with a speaking valve.

55 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
56 Depending on the selected breath timing philosophy.
7.3.2 PSIMV+ mode

PSIMV+ stands for *pressure-controlled synchronized intermittent mandatory ventilation*.

PSIMV+ mode has two options: with and without PSync. For a description of PSIMV+ with active PSync, see Section 7.3.3.

In PSIMV+ mode, the mandatory breaths are PCV+ breaths. These can be alternated with spontaneous breaths.

Each SIMV breath interval includes mandatory time (Tmand) and spontaneous time (Tspont).

- If the patient triggers a breath during Tmand, the ventilator immediately delivers a mandatory breath.
- If the patient triggers a breath during Tspont, the ventilator delivers a spontaneous, pressure-supported breath.
- If the patient does not trigger a breath during Tspont, the ventilator automatically delivers a mandatory breath at the end of Tmand.

In PSIMV+ mode, parameters for both mandatory and spontaneous breath types are set.

- For mandatory breaths, the pressure control (ΔPcontrol) setting defines the applied pressure above PEEP. Rate and I:E define the timing of the breath cycle.
- For spontaneous breaths, ΔPsupport defines the pressure support above PEEP.
- ETS affects the inspiratory timing of the supported breaths. The inspiratory time can also be limited by TI max.\(^{57}\)

This mode is available for use with a speaking valve.

Ventilator controls

CO2 elimination

1. ΔPcontrol
2. Rate
3. Sigh\(^{58}\) *(not shown)*

Oxygenation

4. PEEP
5. ΔPsupport
6. I:E\(^{59}\)
7. Oxygen *(not shown)*

Patient synchronization

8. ETS

\(^{57}\) TI max is only available for adult/pediatric patients if it is enabled in Configuration (Section 13.4.4). It is always available for neonates.

\(^{58}\) Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.

\(^{59}\) Depending on the selected breath timing philosophy.
7.3.3 PSIMV+ mode with PSync

PSIMV+ stands for pressure-controlled synchronized intermittent mandatory ventilation.

PSIMV+ mode has two options: with and without PSync. For a description of PSIMV+ without active PSync, see Section 7.3.2.

If the patient triggers a breath, the ventilator delivers a breath supported at the ΔPinsp setting.

If the patient does not trigger a breath, the ventilator automatically delivers a mandatory breath at the ΔPinsp setting.

In PSIMV+ mode, parameters for both mandatory and spontaneous breath types are set.

- The ΔPinsp setting defines the applied pressure above PEEP for mandatory and spontaneous breaths.
- Rate and TI define the breath timing for mandatory breaths.
- For spontaneous breaths, ETS affects the inspiratory timing of the supported breaths. The inspiratory time can also be limited by TI max.60

Figure 7-6. PSIMV+ with PSync mode: Breathing pattern and controls

Ventilator controls

CO2 elimination

1 ΔPinsp 2 Rate

Sigh61 (not shown)

Oxygenation

3 PEEP 4 I:E62

Oxygen (not shown)

Patient synchronization

5 P-ramp 7 ETS

6 Trigger

60 TI max is only available for adult/pediatric patients if it is enabled in Configuration (Section 13.4.4). It is always available for neonates.

61 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.

62 Depending on the selected breath timing philosophy.
7.3.4 DuoPAP mode

DuoPAP stands for *duo positive airway pressure*.

DuoPAP is a type of pressure ventilation designed to support spontaneous breathing on two alternating levels of CPAP.

In this mode, the ventilator switches automatically and regularly between two operator-selected levels of positive airway pressure or CPAP.

Cycling between the levels is triggered by DuoPAP timing settings or by patient effort.

In DuoPAP, the switch-over\(^63\) between the two levels is defined by the pressure settings, P high and PEEP/CPAP, and the time settings, T high and Rate.

Note the following:

- At conventional settings and in the absence of spontaneous breathing, DuoPAP resembles PCV+.
- As you decrease the rate, keeping T high short relative to the time at the lower pressure level, the mode looks more like PSIMV+, with spontaneous breaths following mandatory breaths.
- If T high is set to almost the breath cycle time with just enough time at the low level to allow full or near-full exhalation, this mode looks like APRV (Section 7.3.5).

Pressure support can be set to assist spontaneous breaths in DuoPAP, whether they occur at the PEEP/CPAP or P high level.

\(\Delta P_{\text{support}}\) is set relative to (above) PEEP/CPAP, which means that spontaneous breaths at the P high level are supported only when this target pressure is greater than P high.

\(^63\) The switch-over from PEEP/CPAP to P high is synchronized to the patient’s efforts in the Synchronization window.

\(^64\) Pressure rise time to P high and \(\Delta P_{\text{support}}\).
7.3.5 APRV mode

APRV stands for airway pressure release ventilation.

Set airway pressure P_{high} is transiently released to a lower level P_{low}, after which it is quickly restored to reinflate the lungs.

For a patient who has no spontaneous breathing efforts, APRV is similar to pressure-controlled inverse ratio ventilation.

APRV allows spontaneous breathing at any time during the respiratory cycle.

APRV is an independent mode. When changing modes, the pressure and timing settings from any other mode are not transferred to APRV, and vice versa.

When switching to APRV for the first time, the initial timing and pressure settings proposed are based on IBW (Weight for neonatal patients) as shown in the following table.

Table 7-2. Default settings for APRV

<table>
<thead>
<tr>
<th>IBW / Weight (kg)</th>
<th>$P_{\text{high}} / P_{\text{low}}$ (cmH2O)</th>
<th>T_{high} (s)</th>
<th>T_{low} (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 to 2.99</td>
<td>20 / 5</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>3 to 5.9</td>
<td>20 / 5</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>6 to 8.9</td>
<td>20 / 5</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>9 to 20.9</td>
<td>20 / 5</td>
<td>2.6</td>
<td>0.4</td>
</tr>
<tr>
<td>21 to 39</td>
<td>20 / 5</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>40 to 59</td>
<td>20 / 5</td>
<td>4.4</td>
<td>0.6</td>
</tr>
<tr>
<td>> 60</td>
<td>20 / 5</td>
<td>5.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 7-8. APRV mode: Breathing pattern and controls

Ventilator controls

- **CO2 elimination**
 - 1 P_{low}
 - 2 T_{low}

- **Oxygenation**
 - 3 P_{high}
 - 4 T_{high}
 - 5 $\Delta P_{\text{support}}$
 - Oxygen (not shown)

- **Patient synchronization**
 - 6 P-ramp (to P_{high})
 - 7 Trigger\(^{66}\)

\(^{65}\) With prolonged T_{high} settings and short T_{low} settings, the P_{high} setting in effect becomes the PEEP level.

\(^{66}\) Only used to count spontaneous breaths or to monitor patient activity.
7.3.6 SPONT mode

SPONT stands for *spontaneous mode*.

SPONT delivers spontaneous breaths and operator-initiated manual, mandatory breaths.

When pressure support is set to zero, the ventilator functions like a conventional CPAP system.

- The pressure support (ΔPsupport) setting defines the applied pressure during inspiration.
- The PEEP setting defines the PEEP applied during expiration.
- ETS affects the inspiratory timing of the supported breaths.
 The inspiratory time can also be limited by TI max. ⁶⁷

This mode is available for use with a speaking valve.

⁶⁷ TI max is only available for adult/pediatric patients if it is enabled in *Configuration* (Section 13.4.4). It is always available for neonates.

⁶⁸ Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
7.4 Intelligent Ventilation

ASV® is a volume-controlled Intelligent Ventilation mode.

ASV is not available for neonatal patients.

7.4.1 ASV mode

ASV stands for Adaptive Support Ventilation®.

ASV maintains an operator-preset, minimum minute ventilation independent of the patient’s breathing activity.

The target breathing pattern (tidal volume and respiratory rate) is calculated by the ventilator, based on the assumption that the optimal breathing pattern results in the least work of breathing, and the minimal force of breathing (driving pressure). For initial settings, see Table 7-3.

ASV adjusts inspiratory pressure and mandatory rate on a breath-by-breath basis taking into account the changing patient lung mechanics (resistance, compliance, RCexp) and applying lung-protective strategies to meet the targets.

A decrease in pressure limitation (Plimit) will follow with a decrease in tidal volume (Vt) and an increase in Rate.

![ASV mode: Breathing pattern and controls](image)
ASV maintains a **preset minimum minute ventilation**:

- Automatically adjusts for changing patient conditions between active and passive states
- Mandatory breaths are pressure controlled
- Spontaneous breaths are pressure supported
- Prevents tachypnea
- Prevents AutoPEEP
- Prevents dead space ventilation
- Does not exceed a ΔPinsp pressure of 10 cmH2O below the upper pressure limit

The operator sets the %MinVol, PEEP, and Oxygen.

For details about working with ASV, see Section 7.8.

Table 7-3. ASV mode initial breath pattern settings

<table>
<thead>
<tr>
<th>Patient group</th>
<th>IBW (kg)</th>
<th>ΔPinsp (cmH2O)</th>
<th>TI (s)</th>
<th>Initial rate (b/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 to 5</td>
<td>15</td>
<td>0.4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6 to 8</td>
<td>15</td>
<td>0.6</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>9 to 11</td>
<td>15</td>
<td>0.6</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>12 to 14</td>
<td>15</td>
<td>0.7</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15 to 20</td>
<td>15</td>
<td>0.8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21 to 23</td>
<td>15</td>
<td>0.9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>24 to 29</td>
<td>15</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>> 30</td>
<td>15</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 to 29</td>
<td>15</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30 to 39</td>
<td>15</td>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>40 to 59</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>60 to 89</td>
<td>15</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>90 to 99</td>
<td>18</td>
<td>1.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>> 100</td>
<td>20</td>
<td>1.5</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
7.4.1.1 ASV and ASV 1.1

ASV 1.1 is the default setting for the ASV mode. The previous version of ASV is also available on the device, and can be selected in Configuration.

ASV 1.1 follows the low tidal volume recommendation (Bellani G, et al. JAMA 2016) and brings additional features and changes:

- Increased target rate and reduced tidal volumes and driving pressure for the majority of patients compared to standard ASV.
- In cases of high time constants and high minute volumes, $V_t\text{ max}$ is limited to 15 ml/kg.

For details about working with ASV, see Section 7.8.

7.5 Noninvasive modes

CAUTION

- Hamilton Medical ventilators must not be used for helmet CPAP therapy.
- All Hamilton Medical ventilators are able to provide noninvasive ventilation through a helmet. The turbine-driven ventilators are able to provide higher continuous flow levels, and the air supply provided by filtered room air (HEPA) with ambient humidity.

The following modes are noninvasive:

- NIV
- NIV-ST
- nCPAP
- nCPAP-PC

The NIV and NIV-ST modes are implementations of noninvasive positive pressure ventilation (NPPV).

nCPAP and nCPAP-PC are neonatal modes that offer nasal continuous positive airway pressure - and intermittent positive pressure support through a nasal interface (mask or prongs) for infants and neonates.

For details about working with noninvasive modes, see Section 7.7.
7.5.1 NIV mode

NIV stands for *noninvasive ventilation*. NIV mode delivers spontaneous breaths. NIV is designed for use with a mask or other noninvasive patient interface.

When pressure support is set to zero, the ventilator functions like a conventional CPAP system.

- The pressure support (ΔPsupport) setting defines the applied pressure during inspiration.
- ETS affects the inspiratory timing of the supported breaths. The inspiratory time can also be limited by TI max.
- The PEEP setting defines the PEEP applied during expiration.

For additional details about working with noninvasive modes, see Section 7.7.

69 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
7.5.2 NIV-ST mode

NIV-ST stands for spontaneous/timed noninvasive ventilation.

NIV-ST mode delivers time-cycled or flow-cycled breaths. Every patient trigger results in a flow-cycled, pressure-supported breath.

If the rate of patient-triggered breaths falls below the set mandatory Rate, time-cycled breaths are delivered at the set Rate and timing.

If the patient triggers a breath during the breath interval, the ventilator immediately delivers a spontaneous breath. If the patient does not trigger an inspiration during this time, the ventilator initiates a mandatory breath according to the set Rate.

This mode requires that you set the parameters needed for both mandatory and spontaneous breath types.

- The inspiratory pressure setting, \(\Delta \text{P}_{\text{insp}} \), defines the applied pressure for both mandatory and spontaneous breaths.
- The Rate and TI (inspiratory time) control settings define the breath timing.
- For spontaneous breaths, the ETS setting affects the inspiratory timing of the supported breaths.
 The inspiratory time can also be limited by TI max.

Figure 7-12. NIV-ST mode: Breathing pattern and controls

[Diagram of breathing pattern and controls]

<table>
<thead>
<tr>
<th>Ventilator controls</th>
<th>CO\text{2} elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rate</td>
<td>Sigh70 (not shown)</td>
</tr>
<tr>
<td>2 PEEP</td>
<td>3 TI</td>
</tr>
<tr>
<td>Oxygenation</td>
<td>4 (\Delta \text{P}_{\text{insp}})</td>
</tr>
<tr>
<td>Oxygen (not shown)</td>
<td>5 P-ramp</td>
</tr>
<tr>
<td>Patient synchronization</td>
<td>6 Trigger</td>
</tr>
</tbody>
</table>

70 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
7.5.3 The nCPAP modes

CAUTION

Be sure to set the Flow alarm limit to an appropriate level above the current monitored peak flow to avoid potential gastric overinflation, and to be able to detect leaks and disconnection of the patient interface.

nCPAP stands for nasal continuous positive airway pressure.

The HAMILTON-C1 offers two nCPAP modes: nCPAP and nCPAP-PC, described in detail in the following sections.

About the Flow and Insp Flow parameters

In these modes, the Flow and Insp Flow parameters monitor average and peak flow, respectively, as described in the following table.

Table 7-4. Flow parameters in nCPAP modes

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>nCPAP mode</th>
<th>nCPAP-PC mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (l/min)</td>
<td>Average flow, updated every second.</td>
<td>Average flow during expiration, updated each breath.</td>
</tr>
<tr>
<td></td>
<td>Displayed in the Monitoring window.</td>
<td></td>
</tr>
<tr>
<td>Insp Flow (l/min)</td>
<td>Peak flow during inspiration, measured every second.</td>
<td>Insp Flow is a main monitoring parameter (MMP) and is always displayed.</td>
</tr>
</tbody>
</table>

About the High Flow alarm

In both modes, the High Flow alarm monitors the inspiratory flow and can help to detect disconnection of the patient interface. When the flow exceeds the set limit, the High Flow alarm is generated and the system reduces the delivered flow. As a result, the delivered pressure may also be reduced.

To minimize the incidence of this alarm, observe the Insp Flow values and set the flow limit to a value above the average Insp Flow reading plus a known minimum leakage.
7.5.3.1 nCPAP mode

nCPAP stands for nasal continuous positive airway pressure.

This mode applies CPAP over a nasal interface (mask or prongs). Leaks are compensated due to the set High Flow limit.

The nCPAP mode works with the following parameters:

- Control settings: PEEP/CPAP and Oxygen
- Monitored parameters: Insp Flow and Flow

For details about the parameters and flow-related alarms, see Sections 7.5.3, 5.10, and 9.4.

When a manual breath is applied, the pressure changes to PEEP + 5 cmH2O for a period of 0.4 seconds, or so long as the key is pressed, to a maximum of 15 seconds. When the manual breath is completed, the pressure returns to the set PEEP/CPAP level.

Figure 7-13. nCPAP mode: Breath pattern and controls

1. PEEP
2. Manual breath
3. Manual breath key pressed
4. Pressure limitation
 Oxygen (not shown)
7.5.3.2 nCPAP-PC mode

nCPAP-PC stands for nasal continuous positive airway pressure - pressure control.

This mode delivers, in addition to the set CPAP, intermittent, time-cycled, and pressure-controlled breaths. This results in a biphasic breathing pattern.

The patient can also breathe freely at both pressure levels. The inspiratory flow follows the respiratory effort of the patient on both pressure levels. Leaks are compensated due to the set High Flow limit.

The following parameters are used in the nCPAP-PC mode: Rate, ΔPcontrol, TI, P-ramp, PEEP/CPAP, Oxygen.

When a manual breath is applied, the pressure changes to the ΔPcontrol setting for the length of time set by the TI (inspiratory time) or so long as the key is pressed, to a maximum of 15 seconds. When the manual breath is completed, the pressure returns to the set PEEP/CPAP level.

For details about the parameters, see Section 5.10.
7.6 Special conditions

The following ventilator modes/states may be observed under certain error conditions:

Table 7-5. Special conditions overview

<table>
<thead>
<tr>
<th>For details about ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Failure mode</td>
<td>Section 7.6.1</td>
</tr>
<tr>
<td>Safety ventilation</td>
<td>Section 7.6.2</td>
</tr>
<tr>
<td>Ambient state</td>
<td>Section 7.6.3</td>
</tr>
</tbody>
</table>

7.6.1 Sensor Failure mode

When there is a problem with the flow sensor that lasts for more than three breath cycles, the External flow sensor failed alarm is generated and the ventilator switches to Sensor Failure mode. Ventilation continues in PCV+ mode.

Once the alarm is resolved, the ventilator exits Sensor Failure mode and returns to ventilation with the previous mode and settings.

For details about the External flow sensor failed alarm, see Section 9.4.

The following conditions apply to ventilation in Sensor Failure mode:

- The ventilator changes to PCV+ mode.
- Internal ventilator pressure (Pvent) is displayed instead of airway pressure (Paw).
- Monitoring parameters related to the flow sensor measurement are shown in grey, indicating they are inaccurate.
- The message Sensor Failure mode ventilation initiated is recorded in the Event log.

7.6.2 Safety ventilation

In the event of certain technical failures, the ventilator switches to Safety ventilation. This gives you time to arrange for corrective actions, including organizing a replacement ventilator.

If these conditions occur when using HiFlowO2, the ventilator switches to Safety mode.

The following conditions apply to ventilation in Safety ventilation:

- The ventilator does not monitor patient inputs in Safety ventilation.
- In Safety ventilation, the blower runs constantly to create inspiratory pressure (ΔPinsp) (Tables 7-6 and 7-7).
- In Safety mode, the blower creates a constant pressure of 5 cmH2O at the inspiratory port.
- In Safety ventilation, the expiratory valve switches system pressure levels between PEEP and inspiratory pressure.
- You must turn off ventilator power to exit Safety ventilation.
Table 7-6. Safety ventilation settings (Adult/Ped)

<table>
<thead>
<tr>
<th>IBW (kg)</th>
<th>ΔPinsp (cmH2O)</th>
<th>Rate (b/min)</th>
<th>Oxygen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 to 5.9</td>
<td>15</td>
<td>35</td>
<td>> 21%</td>
</tr>
<tr>
<td>6 to 8.9</td>
<td>15</td>
<td>30</td>
<td>> 21%</td>
</tr>
<tr>
<td>9 to 19.9</td>
<td>15</td>
<td>25</td>
<td>> 21%</td>
</tr>
<tr>
<td>20 to 30</td>
<td>15</td>
<td>20</td>
<td>> 21%</td>
</tr>
<tr>
<td>31 to 39</td>
<td>15</td>
<td>17</td>
<td>> 21%</td>
</tr>
<tr>
<td>40 to 59</td>
<td>15</td>
<td>15</td>
<td>> 21%</td>
</tr>
<tr>
<td>60 to 89</td>
<td>15</td>
<td>12</td>
<td>> 21%</td>
</tr>
<tr>
<td>90 to 99</td>
<td>18</td>
<td>12</td>
<td>> 21%</td>
</tr>
<tr>
<td>≥ 100</td>
<td>20</td>
<td>12</td>
<td>> 21%</td>
</tr>
</tbody>
</table>

PEEP is set to the PEEP of the previous mode and the I:E ratio is 1:4.

Table 7-7. Safety ventilation settings (Neonatal)

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>ΔPinsp (cmH2O)</th>
<th>Rate (b/min)</th>
<th>Oxygen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.26</td>
<td>15</td>
<td>60</td>
<td>> 21%</td>
</tr>
<tr>
<td>1.26 to 2.99</td>
<td>15</td>
<td>45</td>
<td>> 21%</td>
</tr>
<tr>
<td>3.0 to 5.9</td>
<td>15</td>
<td>35</td>
<td>> 21%</td>
</tr>
<tr>
<td>6.0 to 8.9</td>
<td>15</td>
<td>30</td>
<td>> 21%</td>
</tr>
<tr>
<td>9.0 to 19.9</td>
<td>15</td>
<td>25</td>
<td>> 21%</td>
</tr>
<tr>
<td>> 20</td>
<td>15</td>
<td>20</td>
<td>> 21%</td>
</tr>
</tbody>
</table>

PEEP is set to the PEEP of the previous mode and the I:E ratio is 1:3.

7.6.3 Ambient state

If the technical fault alarm is serious enough to possibly compromise safe ventilation, the ventilator enters the **Ambient state**.

The following conditions apply to ventilation in the Ambient state:

- The inspiratory channel and expiratory valves are opened, letting the patient breathe room air unassisted.
- Provide alternative ventilation immediately.
- You must turn off ventilator power to exit the Ambient state.
7.7 Working with noninvasive modes

This section provides an overview of noninvasive ventilation requirements, contraindications for use, and important information about settings and alarms.

When using noninvasive positive pressure ventilation (NPPV), use a noninvasive patient interface, for example a mask, rather than an invasive conduit.

7.7.1 Required conditions for use

Before proceeding, review the safety information in Chapter 1.

The following requirements must be met to use noninvasive ventilation:

- The patient must be able to trigger the ventilator and must have regular spontaneous breaths. Noninvasive ventilation is intended to provide supplemental ventilatory support to patients with regular spontaneous breaths.
- The patient must be conscious.
- The patient must be able to maintain an adequate airway.
- Intubation must be possible at any time.
- The mask or interface is a good fit.

7.7.2 Contraindications

CAUTION

- If you place an additional component, such as an HMEF, between the flow sensor and the patient, the additional resistance limits the ventilator's ability to identify disconnection at the patient. To correctly identify a patient disconnection, be sure to appropriately set the lower limit of the Pressure alarm, as well as the Volume alarm limits, and carefully monitor the patient's SpO2 and, if available, PetCO2 values.
- To prevent possible patient injury, do NOT use noninvasive ventilation on patients with no or irregular spontaneous breaths. Noninvasive ventilation is intended to provide supplemental ventilatory support to patients with regular spontaneous breaths.
- To prevent possible patient injury, do NOT attempt to use noninvasive ventilation on intubated patients.

Using noninvasive ventilation is contraindicated if any of the following conditions are met:

- The patient does not have the drive to breathe
- Partial or complete airway obstruction
- Gastrointestinal bleeding
- Anatomic or subjective intolerance of NIV interface
- Patient is unable to cooperate or protect airway
7.7.3 Potential adverse reactions
The following reactions to noninvasive ventilation are possible:
- Aspiration, gastric insufflation
- Increase of intracranial pressure (ICP)
- Decrease of arterial pressure
- CO2 rebreathing
- Claustrophobia
- Discomfort
- Dyssynchrony
- Skin or conjunctiva lesions

7.7.4 Control settings in noninvasive ventilation

WARNING
- The exhaled volume from the patient can differ from the measured exhaled volume due to leaks around the mask.
- Peak pressures exceeding 33 cmH2O may increase the risk of aspiration due to gastric insufflation. When ventilating with such pressures, consider using an invasive mode.

When a significant leak occurs, the inspiratory flow can never fall below ETS, thereby preventing the ventilator from cycling into exhalation and resulting in endless inspiration. The Ti max setting provides an alternate way to cycle into exhalation. When inspiration lasts longer than Ti max, the ventilator cycles into exhalation.

Ensure the Ti max setting is sufficiently long to give ETS the chance to cycle the ventilator.

- Adjusting the Ti max setting increases or decreases the allowable inspiratory time.
- Increasing ETS above the default 25% allows the ventilator to cycle to terminate inspiration at a higher flow, to accommodate larger leaks.

Other controls require special attention:
- Carefully observe the patient/ventilator interaction.
- Adjust ΔPsupport or ΔPinsp to obtain appropriate tidal volumes.
- The leakage in noninvasive modes can reduce the actual applied PEEP and give rise to autotriggering.
- Adjust PEEP further, considering oxygenation and AutoPEEP.

7.7.5 Alarms in noninvasive ventilation
Due to the changing and unpredictable amount of leakage, volume alarms are less meaningful in noninvasive modes than in other modes. Alarms are based on the returned expiratory gas volume measured at the flow sensor; this value can be significantly lower than the delivered tidal volume, because the delivered tidal volume is the sum of the displayed VTE and the leakage volume.

To avoid nuisance volume alarms, set the low Vt and ExpMinVol alarms to a low level.

Because the noninvasive modes are pressure modes, however, do pay attention to the pressure-related alarms. If the defined PEEP and inspiratory pressure can be maintained, the ventilator is compensating the gas leak sufficiently.
7.7.6 Monitored parameters in noninvasive ventilation

NOTICE

- The following numeric monitoring parameters cannot be used for reliable analysis of patient conditions: ExpMinVol, RCexp, Rinsp, Insp Flow, AutoPEEP, and Cstat.
- Continuous monitoring of clinical parameters and patient comfort is critically important.
- The parameters VTE NIV, MinVol NIV, MVSpont NIV, and MVLeak are leak compensated, and are used in noninvasive modes. These parameters are estimations and may not reflect exact values.

Due to the leakage at the patient interface, displayed exhaled volumes in the noninvasive modes can be substantially smaller than the delivered volumes.

The flow sensor measures the delivered volume and the exhaled tidal volume; the ventilator displays the difference as VLeak in percent (%), and as MVLeak in l/min. Use VLeak and MVLeak to assess the fit of the mask or other noninvasive patient interface.

While a leak at the patient interface influences the tidal volume measurement, leaks in the breathing circuit itself do not influence the tidal volume measurement.

In addition to other clinical parameters, TI, Ppeak, PEEP/CPAP, I:E, fTotal, Pmean, and fSpont can be used to assess the patient’s ventilatory status.

7.7.7 Additional notes about using noninvasive ventilation

Due to some unique characteristics, consider the following points when using noninvasive ventilation.

IntelliTrig function

To synchronize, IntelliTrig compensates for leaks and resistance between the ventilator and the patient, and with each breath, it measures the leakage at the patient interface (mask).

With this information, IntelliTrig adjusts the trigger mechanism, reducing the influence of leakage and the changing breath pattern on the operator-set trigger sensitivity.

Maintaining PEEP and preventing auto-triggering

Significant leakage can be present in noninvasive ventilation, which can serve to reduce the actual applied PEEP/CPAP and give rise to autotriggering. If you cannot reach the set PEEP/CPAP, check the mask fit.

The **Loss of PEEP** alarm alerts you to uncompensated leaks (that is, when the measured PEEP/CPAP is 3 cmH2O lower than the set PEEP/CPAP).
Inspect mask fit and position

Inspect the mask position regularly and adjust as necessary. React promptly and appropriately to any alarms.

The ventilator’s VLeak parameter provides one indicator of mask fit.

To verify that the mask fits properly, ensure that the leakage value shown in the Monitoring window (VLeak, MVLeak) is acceptable.

To monitor leakage during ventilation, set the low limit of the Pressure alarm to a value near the set pressure for ventilation (PEEP/CPAP + ΔPinsp/ΔPsupport). When excessive leaks are present, the ventilator may not be able to reach the set pressure, and generates an alarm.

7.8 Working with ASV

ASV is indicated for passive and spontaneously breathing adult and pediatric patients.

7.8.1 Contraindications

ASV and ASV 1.1 are contraindicated with the following:

- Infants and neonates
- If there is a high leakage (NIV or broncho-pleural fistula)
- Irregular respiratory drive (Cheyne-Stokes respiration)

7.8.2 Setting up ASV on the ventilator

To set up the ventilator using ASV

1. Touch Modes.
2. Touch ASV, then touch Confirm.
3. Set the controls as appropriate:
 - %MinVol: Set a value that results in the same minute volume as a previous mode, if applicable.
 - PEEP, Oxygen, Trigger, ETS, P-ramp: Set according to clinical requirements and the patient condition.
4. Review and adjust alarm limits.
 Set the high Pressure alarm limit to an appropriate value.
 The maximum peak pressure delivered in ASV (Plimit) is 10 cmH2O below the high Pressure alarm limit or equal to the Plimit setting.
 The maximum peak pressure for ASV can be also set using the Plimit control in the Controls window.
 Changing the Plimit value also changes the high Pressure limit. For details, see Section 5.6.1.
5. Connect the patient to the ventilator and start ventilation.

The ventilator initiates several test breaths.

The device automatically selects the values for respiratory rate (fTotal), inspiratory time (TI), and inspiratory pressure (ΔPinsp) based on the calculated IBW and as specified in Table 7-3.

7.8.3 Clinical workflow with ASV

Figure 7-15 provides an overview of the ASV clinical workflow.

For technical specifications, see Section 15.10.
Figure 7-15. Clinical use of ASV

1. Prepare ventilator for clinical use
2. Set controls as appropriate for patient
3. Set alarm limits appropriately
4. Ventilate patient for a period of time

Escalation
- fSpont > fTarget + 10 b/min OR PaCO2 > 45 mmHg?
 - YES: %MinVol + 20%

De-escalation
- fSpont = 0 AND PaCO2 < 45 mmHg?
 - YES: %MinVol - 10%

Weaning
- ΔPinsp ≤ 10 cmH2O?
 - YES: %MinVol - 10% (limited to 25%)
 - NO: %MinVol - 10%

Consider extubation

* stable means fControl = 0 b/min AND PaCO2 ≤ 45 mmHg AND fSpont = fTarget

Patient is stable
- > 60 min (longer for hard-to-wean patients)?
 - YES: %MinVol - 10%
 - NO: %MinVol - 10%

O2 < 40% AND PEEP < 8 cmH2O
- YES: %MinVol - 10%
- NO: %MinVol - 10%
7.8.4 Maintaining adequate ventilation

WARNING

To change the minute volume setting, always use the %MinVol control. Do not manipulate the patient height setting to achieve the desired IBW to control minute volume.

Once ASV is started, the ventilator calculates an optimal breath pattern and associated target values for tidal volume and rate according to the rules in ASV and the set %MinVol to achieve the targets. Depending on whether the patient is passive or actively breathing, the ventilator delivers pressure-controlled or pressure-supported breaths in compliance with a lung-protective strategy. For details, see Section 7.8.8.4.

Once the calculated targets are reached, the result of the ventilation needs to be assessed. All monitored parameters can be used for this purpose.

However, to assess respiratory acid-base status, it is recommended that arterial blood gases be measured and minute ventilation be adjusted accordingly.

Table 7-8 provides examples of how to adjust the %MinVol setting.

<table>
<thead>
<tr>
<th>Condition</th>
<th>%MinVol change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal arterial blood gases</td>
<td>None</td>
</tr>
<tr>
<td>High PetCO2 or PaCO2</td>
<td>Increase %MinVol</td>
</tr>
<tr>
<td></td>
<td>Pay attention to inspiratory pressures</td>
</tr>
<tr>
<td>Low PaCO2</td>
<td>Decrease %MinVol</td>
</tr>
<tr>
<td></td>
<td>Pay attention to mean pressures and oxygenation status</td>
</tr>
<tr>
<td>High respiratory drive</td>
<td>Consider increase in %MinVol</td>
</tr>
<tr>
<td></td>
<td>Consider sedation, analgesia, or other treatments</td>
</tr>
<tr>
<td>Low O2 saturation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Consider increase in PEEP/CPAP and/or Oxygen</td>
</tr>
</tbody>
</table>

7.8.5 Reviewing alarm settings

It is *not* possible to select a %MinVol that is incompatible with the lung-protective rules that govern ASV (for a detailed description, see Section 7.8.8.4). As a consequence, ASV tries to achieve the maximum possible ventilation and activates the ASV: Cannot meet target alarm.
7.8.6 Monitoring ASV

ASV interacts with the patient continuously. Whenever the patient’s respiratory mechanics change, ASV adjusts to this change. Whenever the patient’s breathing activity changes, ASV adjusts the settings.

The **ASV graph**, shown in Figure 7-17, provides a real-time graphical view of the patient status relative to the set target. For details about the graph, see Section 8.4.3.

For details on displaying the **ASV graph** and ASV monitoring values, see Section 8.4.

To monitor progress over time, it is recommended that you plot trends for ΔPinsp, fTotal, and fSpont. Review these trends, together with the %MinVol setting to gain insight into the patient’s ventilatory status. Table 7-9 provides interpretations of typical ventilatory patterns.

Figure 7-16. Example of high %MinVol setting incompatible with the lung-protective rules strategy

![Graph showing high %MinVol setting](image)

Figure 7-17. ASV Graph panel

1. **Patient symbol**: intersection of current measured tidal volume and rate
2. **Target point**: Intersection of target tidal volume and target rate
3. **Target minute volume**
4. **Safety frame**
5. **ΔPinsp**: Inspiratory pressure set by ventilator
6. **fControl**: Machine rate
7. **fSpont**: Spontaneous breath rate
8. **Minute volume curve**
9. **Current measured point (in yellow) and target value (in green)**
7.8.7 Weaning

Weaning patients from the ventilator is a clinical task that requires experience and involves more than just ventilation issues. This section does not intend to provide clinical information other than that needed to operate the ventilator using ASV mode.

ASV always allows patients to take spontaneous breaths. Episodes of spontaneous breathing can occur and are supported by ASV even within a period of fully controlled ventilation. In other words, weaning can start with ASV so early that it may go unrecognized clinically. It is therefore important to monitor the spontaneous efforts of the patient over time.

The weaning progress can be monitored in the trends display when inspiratory pressure (ΔP_{insp}), total rate (f_{Total}), and spontaneous rate (f_{Spont}) are plotted.

It may be necessary to reduce the $\%\text{MinVol}$ setting to 70% or even lower to “motivate” the patient to resume spontaneous breathing. If a patient can sustain minutes or even hours with a low $\%\text{MinVol}$ setting, it does not mean that weaning is complete. In fact, the $\%\text{MinVol}$ setting must always be interpreted in conjunction with the level of ΔP_{insp} needed to achieve the set minute ventilation. Only if ΔP_{insp} and f_{Control} are at their minimum values can weaning be assumed to be complete.

Table 7-9. Interpretation of breathing pattern at lower than 100 $\%\text{MinVol}$ setting

<table>
<thead>
<tr>
<th>ΔP_{insp}</th>
<th>f_{Control}</th>
<th>f_{Spont}</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$>$ 10</td>
<td>$>$ 10</td>
<td>0</td>
<td>Danger of hypoventilation. Check arterial blood gases and consider increasing $%\text{MinVol}$.</td>
</tr>
<tr>
<td>$>$ 10</td>
<td>0</td>
<td>Acceptable</td>
<td>Enforced weaning pattern. Check arterial blood gases and patient respiratory effort. Consider decreasing or increasing $%\text{MinVol}$ accordingly.</td>
</tr>
<tr>
<td>$<$ 8</td>
<td>0</td>
<td>Acceptable</td>
<td>Unsupported breathing. Consider extubation.</td>
</tr>
<tr>
<td>$>$ 10</td>
<td>0</td>
<td>High</td>
<td>Dyspnea. Consider increasing $%\text{MinVol}$ and other clinical treatments. Check for autotriggering.</td>
</tr>
</tbody>
</table>
7.8.8 Functional overview

The following sections provide a brief overview of how ASV manages ventilation.

7.8.8.1 Normal minute ventilation

ASV defines normal minute ventilation according to the graph in Figure 7-18.

Figure 7-18. Normal minute ventilation as a function of ideal body weight (IBW)

7.8.8.2 Compensation for changes in apparatus dead space

Dead space is calculated as 2.2 ml per kg. This dead space is a nominal value that is valid, on average, for intubated patients whose endotracheal tube is connected to the Y-piece of the ventilator by a standard catheter mount.

Changes in alveolar dead space due to ventilation/perfusion mismatch must be compensated using the %MinVol control.

If this dead space is altered by an artificial airway configuration, such as the use of a heat and moisture exchanging filter (HMEF) or nonstandard tubing, modify the %MinVol setting to take into account the added or removed dead space.

7.8.8.3 Targeted minute ventilation

Figure 7-19. MinVol = 7 l/min

7.8.8.4 Lung-protective strategy

Not all combinations of Vt and f shown in Figure 7-19 are safe for the patient. The high tidal volumes will overdistend the lungs, and the small tidal volumes cannot produce alveolar ventilation at all.

Another risk lies in inadequate respiratory rates. High rates can lead to dynamic hyperinflation or breath stacking, resulting in AutoPEEP. Low rates can lead to hypoventilation and apnea. Therefore, it is necessary to limit the number of possible combinations of Vt and f.

When limits are imposed on the possible combinations of Vt and f, ASV uses a double strategy:

- The operator input for ASV determines the absolute boundaries.
- Internal calculations based on patient measurements further narrow the limits to counteract possible operator errors and to follow changes of respiratory system mechanics.

The effect of the strategy is shown in Figure 7-20 and explained in the subsequent sections.
7.8.8.5 Optimal breath pattern

Figure 7-21. Anatomy of the ASV target graphics window

7.8.8.6 Initial breaths: How ASV starts

How do you achieve the target values for a given patient if you do not know whether or not the patient can breathe spontaneously? For this purpose, ASV uses a predefined rate according to the calculated IBW (Table 7-3).

Patient-triggered breaths are pressure supported and flow cycled.

If the patient does not trigger the breath, the delivery of the breath is time cycled, with a preset pressure.

The following controls are operator-set (manual):

- PEEP/CPAP
- Oxygen
- P-ramp
- ETS
- Trigger type and sensitivity
The following controls are adjusted automatically by ASV, and cannot be adjusted by the operator:

- **Mandatory breath rate**: to change total respiratory rate
- **Inspiratory pressure level**: to change inspiratory volume
- **Inspiratory time**: to allow gas flow into the lungs
- **Startup breath pattern**

To safely start ASV, you set the patient height and sex, which are then used to calculate the IBW.

Upon starting ventilation, after some initial test breaths are delivered, the resulting rate and tidal volume are measured and compared with the target values. ASV then responds to the differences between the current and target tidal volumes, as well as the current and target rates.

7.8.8.7 Approaching the target

Figure 7-22 shows a possible scenario after the initial test breaths. The current breath pattern, which is plotted as the patient symbol, shows clear deviation from the target. ASV’s task is to move the patient symbol as close to the circle as possible.

The patient symbol marks the actual measured value for Vt and Rate.

To achieve the target, ASV uses the following strategy:

- If actual Vt < target Vt, the inspiratory pressure is increased.
- If actual Vt > target Vt, the inspiratory pressure is decreased.
- If actual Vt = target Vt, the inspiratory pressure is left unchanged.
- If actual rate < target rate, the fControl rate is increased.
- If actual rate > target rate, the fControl rate is decreased.
- If actual rate = target rate, the fControl rate is left unchanged.

As a result, the patient symbol in Figure 7-22 moves toward the circle. The current Vt is calculated as the average of inspiratory and expiratory volumes. This definition compensates in parts for leaks in the breathing circuit, including the endotracheal tube.

7.8.8.8 Dynamic adjustment of lung protection

The operator preset values are not changed by ASV, and the corresponding safety limits remain as defined in the previous sections. However, if the respiratory system mechanics change, the safety limits change accordingly, as defined in Section 7.8.8.4. The safety limits are updated on a breath-by-breath basis.

For example, if the lungs stiffen, the high Vt limit is lowered proportionally, and the high rate limit is increased.
This dynamic adjustment ensures that ASV applies a safe breathing pattern at all times. In graphical terms, the dotted rectangle changes as shown in Figure 7-23.

Figure 7-23. Lung-protective limits

Lung-protective limits are changed dynamically and according to the respiratory system mechanics.

However, the limits set by the operator are never violated.

7.8.8.9 Dynamic adjustment of optimal breath pattern

After it is calculated, the optimal breath pattern is revised with each breath according to the \textit{RCexp} measurements. A new target breathing pattern is calculated using ASV algorithms. The targets do not change under steady-state conditions. However, if the patient’s respiratory system mechanics change, the target values also change.
8

Monitoring ventilation

8.1 Overview .. 158
8.2 Viewing numeric patient data ... 158
8.3 Viewing graphical patient data ... 160
8.4 Working with Intelligent panels .. 166
8.5 About the monitored parameters ... 171
8.6 Viewing patient ventilation time ... 180
8.7 Viewing device-specific information ... 180
8.1 Overview

You can configure how to view patient data during ventilation, including viewing data numerically and graphically in a combination of waveforms, loops, trends, and Intelligent Panel graphics to suit your institution’s needs (Figure 8-1).

Data is also available in the Monitoring window, which you can access at any time without affecting breath delivery.

For the list of monitored parameters, see Section 8.5.

Figure 8-1. Main display

1 Current mode
2 Pressure/time waveform, configurable (Section 8.3.2)
3 Main monitoring parameters (MMP) (Section 8.2.1)
4 Graphic display, configurable (Section 8.3)

8.2 Viewing numeric patient data

Numeric patient data is readily available as follows:

- The main display prominently shows the configured main monitoring parameters (MMPs). See Section 8.2.1.
- The Monitoring window provides access to all of the parameter data. See Section 8.2.2.

8.2.1 About the main monitoring parameters (MMP)

The MMPs are the numerical monitoring parameters shown on the left side of the display. Every displayed parameter shows the following elements: the current value, name, and unit of the monitoring parameter.

The MMPs that are displayed, as well as their sequence on the display, can be changed in Configuration (Section 13.5). Any of the monitored parameters can be displayed as an MMP. As a result, MMPs may differ between individual ventilators.

An MMP is normally displayed in white. When directly related to an active alarm, the MMP is shown in yellow or red, corresponding to the alarm priority. In addition, a colored bar appears to the right of the affected MMP (Figure 8-2). After the alarm resets, the affected MMP returns to white and the bar is removed.
8.2.2 Viewing patient data in the Monitoring window

The Monitoring window provides access to monitored parameter data as follows:

- The **General** tab (Figure 8-3) provides access to ventilation parameter values.
- When enabled, the **CO2** and **SpO2** tabs provide access to CO2- and SpO2-related data, respectively.

Figure 8-3. Monitoring > General window

1. Monitoring
2. General
3. Parameter values
4. CO2 and SpO2 (if enabled)
5. 1, 2, 3 tabs

Figure 8-2. MMP components

1. MMP value
2. Parameter name/units
3. Parameter associated with an active alarm
4. Measured SpO2 value*

* If SpO2 sensor is enabled and connected
8.3 Viewing graphical patient data

The HAMILTON-C1 can show waveforms, as well as graphic and Intelligent panels on the lower portion of the display.

The following table shows the options for each graphic type.

Table 8-1. Graphical view options

<table>
<thead>
<tr>
<th>Graphic type/Options</th>
<th>Waveforms (data values plotted against time)</th>
<th>Graphics (Intelligent panels)</th>
<th>Trends</th>
<th>Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Pressure</td>
<td>• Dynamic Lung</td>
<td>1-, 6-, 12-, 24-, or 72-h trend data for a selected parameter or combination of parameters</td>
<td>• Pressure/Volume</td>
</tr>
<tr>
<td></td>
<td>• Flow</td>
<td>• Vent Status</td>
<td></td>
<td>• Pressure/Flow</td>
</tr>
<tr>
<td></td>
<td>• Volume</td>
<td></td>
<td></td>
<td>• Volume/Flow</td>
</tr>
<tr>
<td></td>
<td>• Off</td>
<td></td>
<td></td>
<td>• Volume/Flow</td>
</tr>
<tr>
<td></td>
<td>• PCO271</td>
<td>• ASV Graph74</td>
<td></td>
<td>• Volume/PCO271</td>
</tr>
<tr>
<td></td>
<td>• FCO271</td>
<td></td>
<td></td>
<td>• Volume/FCO271</td>
</tr>
<tr>
<td></td>
<td>• Plethysmogram72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.1 Selecting display options

You can change the graphics at any time.

To change the contents of a graphic panel or waveform

1. Touch the area of the display to change.
 The selected panel is highlighted in yellow (Figure 8-4).
 The graphics selection window appears, displaying the current selection (Figure 8-5).

2. Touch the desired option to select it, or touch a tab (Trends, Loops, Graphics, Waveforms) to access additional options.

After making a selection, the window closes automatically, and the display adjusts to the new selection.

71 CO2 option required.
72 SpO2 option required.
73 Only for adult/pediatric patients.
74 Only in ASV mode.
75 72-hour trend not available in all markets
8.3.2 Working with waveforms

The ventilator can plot pressure, volume, and flow against time, in addition to other data as listed in Table 8-1.

The waveforms provide an ongoing real-time graphical view of the selected parameters over multiple breaths. As a result, they also provide a way to assess the numerical monitored parameter values.

8.3.2.1 Waveform views

You can show up to three waveforms on the display. For details, see Section 8.3.2.3.

8.3.2.2 About the Pressure/time (Paw) graph

The blue pressure limit line shows the maximum pressure that the ventilator will apply, which you can set using the Plimit control. The high Pressure alarm limit is shown as a red line. The high Pressure alarm limit is always 10 cmH2O greater than Plimit.
8.3.2.3 Displaying waveforms

You select options in the Waveforms window.

Figure 8-7. Graphics selection > Waveforms window

1. Waveforms 3. Available options
2. Time scale

To select a waveform

1. Touch the area of the display where you wish to show a waveform or touch the waveform to change (Section 8.3.1).
 The graphics selection window appears (Figure 8-5).
2. If needed, touch the Waveforms tab.
3. If needed, change the time scale to apply to all waveforms.
4. Touch the waveform type to display.
 To leave the area blank, touch Off.
 You must display at least one waveform in the top portion of the display.
 Once the selection is made, the window closes and the selected waveform is displayed.

Figure 8-8. Waveform display

8.3.2.4 Changing the waveform time scale

Scaling refers to the values of the x- and y-axis of a waveform or a loop. In the waveforms displayed on the ventilator, the x-axis represents time, while the y-axis can represent a variety of parameters, including pressure, flow, or volume.

You can set the time scale (x-axis values) of the waveforms; your selection applies to all displayed waveforms.

A scale value refers to the length of the x-axis. For example, a scale value of 24 means that the x-axis displays the waveform from 0 to 24 seconds.

The HAMILTON-C1 offers the following time scale options, in seconds:

- Adult/Ped: 6, 12, 18, 24, 30
- Neonatal: 3, 6, 12, 18, 24

To change the time scale

- In the Waveforms window, touch the Time scale arrow (Figure 8-7) and select the time scale to use.

Your selection applies to all displayed waveforms.
8.3.2.5 Freezing and reviewing waveforms and trends

You can temporarily freeze the display of waveforms and trends. After 30 seconds of inactivity, they are automatically unfrozen.

When Freeze is enabled, any displayed waveforms and trend graphs are frozen, allowing you to scroll through them for a detailed review. The Freeze function is time-synced across the displayed graphs.

Note that when Freeze is enabled, all of the elements on the display are unavailable.

To freeze waveforms and trends

1. Touch the Freeze button (1 in Figure 8-9).
 Any displayed waveforms and Trend graphs are frozen, and cursor bars are displayed.

2. To scroll through the graphics for analysis, turn the P&T knob clockwise or counter-clockwise.
 The cursor bars move to the right and to the left.

3. To unfreeze the display, touch the Freeze button again or press the P&T knob.
 The display returns to displaying real-time data and all of the elements on the display are available.

8.3.3 Working with Trend graphs

Trend data includes all data since the ventilator was turned on for a selected parameter for the past 1, 6, 12, 24, or 72 hours.

From the time the ventilator is turned on, it continuously stores up to 72 hours of monitored parameter data in its memory, including when in Standby. This data is deleted upon setting up a new patient.

You can also freeze trend graphs and examine them more closely. When trends are frozen, the panel shows the time and the corresponding value of the monitored parameter. For details on using (Freeze) to freeze trends, see Section 8.3.2.5.

For details on freezing a trend, see the previous section.
Most monitoring parameters can be trended. The following parameters are trended in combination: \(P\text{peak}/\text{PEEP}, \) \(\text{ExpMinVol}/\text{MVSpont}, \) \(f\text{Total}/f\text{Control}, \) \(V\text{Daw}/V\text{TE}, \) \(V\text{TE}/V\text{talv}, \) and \(\text{SpO2}/\text{Oxygen} \) and \(\text{SpO2}/\text{FiO2} \) (if supported on your device).

8.3.3.1 Displaying trends

Figure 8-11. Graphics selection > Trends window

1. Touch the graphics area at the bottom half of the display (Section 8.3.1).
2. In the graphics selection window, touch the **Trends** tab (Figure 8-11).
3. Select the parameter(s) to trend.
4. Touch the desired trend time.
5. Touch **Confirm**.

The selected trend information is displayed (Figure 8-10).
8.3.4 Working with loops

The HAMILTON-C1 can display a dynamic loop based on the parameter combinations listed in Table 8-1.

Figure 8-12. Loops panel, Pressure/Volume loop displayed

8.3.4.1 Displaying loops

Figure 8-13. Graphics selection > Loops window

To display loops

1. Touch the graphics area at the bottom half of the display (Section 8.3.1).
2. In the graphics selection window, touch the Loops tab.
3. Touch the parameter combination to display.

The selected combination is displayed (Figure 8-12).

8.3.4.2 Storing loops

You can store a loop to use as a reference, for comparison purposes.

To store a new loop

1. In the Loop display (Figure 8-12), touch [Loop reference] to store the loop curve with the current date and time.

The previous and current characteristics are shown. Any previously stored loop is discarded.
8.4 Working with Intelligent panels

On the HAMILTON-C1 neo, you can show the Vent Status Intelligent panel on the ventilator display.

On the HAMILTON-C1, you can show any of the following Intelligent panels on the ventilator display:

- Dynamic Lung
- Vent Status
- ASV Graph

The Intelligent panels are all displayed using the graphics selection window Graphics tab.

8.4.1 Dynamic Lung panel: real-time ventilation status

The Dynamic Lung\(^76\) shows an up-to-date visual representation of key ventilation data (Figure 8-14). It visualizes tidal volume, lung compliance, patient triggering, and resistance in real-time.

In addition to the graphic representation, the panel shows numeric data for key parameters. If all values are in a normal range, the panel is framed in green.

The Dynamic Lung comprises the following components:

- Mechanical breath
- Respiratory compliance
- Airway resistance
- Patient triggering
- SpO2 data (if installed and enabled)

Figure 8-14. Dynamic Lung panel

1 Sex, height, IBW
2 Representation of lung compliance
3 Representation of airway resistance
4 Monitored parameter values
5 Representation of breaths and tidal volume
6 Patient trigger (diaphragm)
7 Heart and pulse display\(*\)

\(*\) if SpO2 sensor enabled and connected.

Mechanical breaths, with tidal volume

The mechanical breath is shown as a set of lungs that expand and contract in synchrony with ventilator breath delivery, showing the delivered tidal volume (Vt) in real-time. The lung size displayed is relative to the “normal” size for the patient’s height.

A Disconnection alarm is indicated by a deflated lung. An Exhalation obstructed alarm is indicated by an over-inflated lung.

The movement and shape of the lungs allow you to quickly verify that the ventilator is ventilating the patient.

\(^76\) Only for adult/pediatric patients.
Respiratory compliance
Respiratory compliance is a measure of the lung’s ability to stretch and expand. Compliance is illustrated by the contour lines of the lung, as shown in Figure 8-15. The static measurement is provided with the Cstat parameter.

Figure 8-15. Examples of lung compliance (Cstat) illustrated in Dynamic Lung

Airway resistance
Airway resistance refers to the total resistance imposed by the patient’s airway as well as the artificial airway, such as an endotracheal tube or tracheostomy tube. Airway resistance is illustrated by the size and color of the tracheobronchial tree, as shown in Figure 8-16. The resistance measurement is provided with the Rinsp parameter.

Figure 8-16. Examples of resistance shown by the bronchial tree of the Dynamic Lung

<table>
<thead>
<tr>
<th>1 Very low compliance</th>
<th>3 Normal compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Low compliance</td>
<td>4 High compliance</td>
</tr>
</tbody>
</table>

1 Resistance information is unavailable
2 Normal resistance
3 Moderate resistance
4 High resistance
Patient trigger

If a patient trigger is detected, an illustration of the diaphragmatic muscle appears briefly at the beginning of inspiration, as shown in Figure 8-17. This allows you to quickly see whether the breath is patient triggered.

Figure 8-17. Patient triggering (1) in Dynamic Lung

SpO2 data

If the SpO2 option is enabled and a sensor is connected, the Dynamic Lung panel shows a heart and big vessel illustration superimposed on the lungs. The heart beats in synchrony with the patient’s pulse rate.

For details about SpO2 measurement, see the Pulse Oximetry Instructions for Use.

8.4.1.1 Displaying the Dynamic Lung

To display the Dynamic Lung

1. Touch the graphics area at the bottom half of the display (Section 8.3.1).
2. In the graphics selection window, touch the Graphics tab (Figure 8-5).
3. Touch Dynamic Lung.

The Dynamic Lung panel is displayed (Figure 8-18).

Figure 8-18. Dynamic Lung in display

8.4.2 Vent Status panel: real-time ventilator dependence status

The Vent Status panel (Figure 8-19) displays six parameters related to the patient’s ventilator dependence, in the areas of oxygenation, CO2 elimination, and patient activity.

A floating indicator moving up and down within the column shows the value for a given parameter.

When the indicator is in the white (weaning) zone, a timer starts, showing how long that value has been in the weaning zone. When all values are in the weaning zone, the Vent Status panel is framed in green, indicating that weaning should be considered. A timer appears, recording the length of time all values have been in the weaning zone (Figure 8-19).

The panel is updated breath by breath.

Table 8-2 describes the parameters shown in the Vent Status panel.

You can configure the weaning zone ranges for these parameters in Configuration. To set the values, see Section 13.6.1.
Vent Status panel: real-time ventilator dependence status

Figure 8-19. Vent Status panel

Table 8-2. Vent Status parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (%)</td>
<td>Oxygen setting.</td>
</tr>
<tr>
<td>PEEP (cmH2O)</td>
<td>PEEP/CPAP setting.</td>
</tr>
<tr>
<td>MinVol (l/min)</td>
<td>Normal minute ventilation (see Section 7.8).</td>
</tr>
<tr>
<td>ΔPinsp (cmH2O)</td>
<td>Inspiratory pressure, the target pressure (additional to PEEP/CPAP) applied during the inspiratory phase.</td>
</tr>
<tr>
<td>RSB (1 / (l*min))<sup>77</sup></td>
<td>Rapid shallow breathing index. The total breathing frequency (fTotal) divided by the exhaled tidal volume (VTE).</td>
</tr>
<tr>
<td>%fSpont (%)</td>
<td>Spontaneous breath percentage. The moving average of the percentage of spontaneous breaths over the last 10 total breaths.</td>
</tr>
</tbody>
</table>

For additional details, including ranges and accuracy, see Table 15-8.

⁷⁷ Weaning zone defaults are based on normal values < 100/(l*min) for adult patients. Default values can be changed in Configuration.
8.4.2.1 Displaying the Vent Status panel

To display the Vent Status panel

1. Touch the graphics area at the bottom half of the display (Section 8.3.1).
2. In the graphics selection window, touch the Graphics tab (Figure 8-5).
3. Touch Vent Status.

The Vent Status panel is displayed (Figure 8-19).

8.4.3 ASV Graph panel: real-time patient condition and targets

Available in ASV78 mode, the ASV Graph shows how the adaptive lung controller moves toward its targets. The graph shows both the target and real-time patient data for tidal volume, frequency, pressure, and minute ventilation.

Figure 7-17 in Chapter 7 describes the graph in detail.

78 Only for adult/pediatric patients.

8.4.3.1 Displaying the ASV Graph

To display the ASV Graph

1. Touch the graphics area at the bottom half of the display (Section 8.3.1).
2. In the graphics selection window, touch the Graphics tab (Figure 8-5).
3. Touch ASV Graph.

The ASV Graph is displayed (Figure 8-20).
8.5 About the monitored parameters

The following table provides a list of the ventilator’s monitored parameters.

You can review all parameter values in the Monitoring window (Section 8.2.2). The display of monitored parameters is updated every breath or is time driven.

See Section 15.7 for parameter specifications.

For details about SpO2-related parameters, see the Pulse Oximetry Instructions for use.

For a comparison of Hamilton Medical ventilation-related terminology with ISO 19223:2019, see Section 15.5.
Table 8-3. Monitored parameters

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td></td>
</tr>
</tbody>
</table>
| AutoPEEP (cmH2O) | The difference between the set PEEP and the calculated total PEEP within the lungs. AutoPEEP is the abnormal pressure generated by air “trapped” in the alveoli due to inadequate lung emptying. Ideally, it should be zero. AutoPEEP is calculated using the LSF method applied to the entire breath. Actively breathing patients can create artifacts or noise, which can affect the accuracy of these measurements. When AutoPEEP is present, volutrauma or barotrauma might develop. In active patients, AutoPEEP may present an extra workload to the patient. AutoPEEP or air trapping may result from an expiratory phase that is too short, which may be observed under the following conditions:
 • Delivered tidal volume too large
 • Expiratory time too short or respiratory rate too high
 • Circuit impedance too high or expiratory airway obstruction
 • Peak expiratory flow too low
AutoPEEP is also referred to as intrinsic PEEP. |
| Driving pressure, ΔP (cmH2O) | A calculated value showing the ratio of tidal volume to static compliance, which reflects the difference between P_{plateau} and PEEP. |
| PEEP/CPAP (cmH2O) | Monitored PEEP/CPAP. The airway pressure at the end of exhalation. Measured PEEP/CPAP may differ slightly from the set PEEP/CPAP, especially in spontaneously breathing patients. |
| ΔP_{insp} (cmH2O) | Inspiratory pressure, the automatically calculated target pressure (additional to PEEP) applied during the inspiratory phase. Also displayed in the Vent Status panel. Not all modes use the ΔP_{insp} parameter. Rather, this target pressure is set using the following parameters, depending on the selected mode:
 • APVcmv, APVsimv, ASV: Automatically calculated target pressure
 • PCV+: $\Delta P_{\text{control}}$ setting
 • PSIMV+, NIV-ST: ΔP_{insp} setting
 • SPONT, NIV: $\Delta P_{\text{support}}$ setting
 • APRV, DuoPAP: P high setting |
<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{mean}}) (cmH(_2)O)</td>
<td>Mean airway pressure. The absolute pressure, averaged over the breath cycle. (P_{\text{mean}}) is an important indicator of the possible impact of applied positive pressure on hemodynamics and surrounding organs.</td>
</tr>
<tr>
<td>(P_{\text{peak}}) (cmH(_2)O)</td>
<td>Peak airway pressure. The highest pressure during the previous breath cycle. It is influenced by airway resistance and compliance. (P_{\text{peak}}) may differ noticeably from alveolar pressure if airway resistance is high. This value is always displayed.</td>
</tr>
<tr>
<td>(P_{\text{plateau}}) (cmH(_2)O)</td>
<td>Plateau or end-inspiratory pressure. The pressure measured at the end of inspiration when flow is at or close to zero. Used as a rough representation of alveolar pressure. (P_{\text{plateau}}) is displayed for mandatory and time-cycled breaths.</td>
</tr>
<tr>
<td>(P_{\text{prox}}) (cmH(_2)O)</td>
<td>The airway pressure at the proximal patient interface. Displayed only in HiFlowO2 when a flow sensor is connected.</td>
</tr>
</tbody>
</table>

Flow

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{\text{plateau}}) (cmH(_2)O)</td>
<td>Plateau or end-inspiratory pressure. The pressure measured at the end of inspiration when flow is at or close to zero. Used as a rough representation of alveolar pressure. (P_{\text{plateau}}) is displayed for mandatory and time-cycled breaths.</td>
</tr>
<tr>
<td>(P_{\text{prox}}) (cmH(_2)O)</td>
<td>The airway pressure at the proximal patient interface. Displayed only in HiFlowO2 when a flow sensor is connected.</td>
</tr>
</tbody>
</table>

79 Only displayed as an MMP; not displayed in the Monitoring window.

Flow (in HiFlowO2) (l/min) | The flow of gas to the patient in HiFlowO2. |
Flow (in nCPAP/nCPAP-PC) (l/min) | Only active in nCPAP and nCPAP-PC modes. Displays the current flow as follows:
• In nCPAP mode, this value is the average flow, updated every second.
• In nCPAP-PC mode, this value is the average flow during expiration, updated every breath.
Displayed in the Monitoring window.
Flow is affected by the setting of the Flow alarm. See Chapter 9. |
Insp Flow (l/min) | Peak inspiratory flow, spontaneous or mandatory. Measured every breath. |
### Parameter (unit)	Definition
Volume

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVSpont MVSpont NIV (l/min)</td>
<td>Spontaneous expiratory minute volume. The moving average of the monitored expiratory volume per minute for spontaneous breaths, over the last 8 mandatory and spontaneous breaths. In noninvasive ventilation modes, MVSpont is replaced by MVSpont NIV. MVSpont NIV is an adjusted parameter taking leakage into account.</td>
</tr>
<tr>
<td>VLeak (%) MVLeak (l/min)</td>
<td>Due to the leakage at the patient interface, displayed exhaled volumes in the noninvasive modes can be substantially smaller than the delivered volumes. The flow sensor measures the delivered volume and the exhaled tidal volume; the ventilator displays the difference as VLeak in % and as MVLeak in l/min, averaged over the past 8 breaths. VLeak/MVLeak can indicate leaks on the patient side of the flow sensor. They do not include leakage between the ventilator and the flow sensor. Use VLeak and MVLeak to assess the fit of the mask or other noninvasive patient interface.</td>
</tr>
<tr>
<td>VTE VTE NIV (ml)</td>
<td>Expiratory tidal volume, the volume exhaled by the patient. It is determined from the flow sensor measurement, so it does not show any volume added due to compression or lost due to leaks in the breathing circuit. If there is a gas leak on the patient side, the displayed VTE may be less than the tidal volume the patient actually receives. In noninvasive ventilation modes, VTE is replaced by VTE NIV. VTE NIV is an adjusted parameter taking leakage into account</td>
</tr>
<tr>
<td>VTESpont (ml)</td>
<td>Spontaneous expiratory tidal volume, the volume exhaled by the patient. If there is a gas leak on the patient side, the displayed VTESpont may be less than the tidal volume the patient actually receives. Only displayed for spontaneous breaths.</td>
</tr>
<tr>
<td>Parameter (unit)</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| VTI (ml) | Inspiratory tidal volume, the volume delivered to the patient, determined from the flow sensor measurement.
If there is a gas leak on the patient side, the displayed VTI may be larger than the displayed VTE. |
| Vt/IBW Vt/Weight (kg) | Tidal volume is calculated according to ideal body weight (IBW) for adult/pediatric patients and according to the actual body weight for neonatal patients. |
| **Time** | |
| fControl (b/min) | Mandatory breath frequency. The moving average of machine-delivered breaths per minute over the last 8 total breaths. |
| fSpont (b/min) | Spontaneous breath frequency.
The moving average of spontaneous breaths per minute over the last 8 total breaths. |
| fTotal (b/min) | Total breathing frequency.
The moving average of the patient’s total breathing frequency over the last 8 breaths, including both mandatory and spontaneous breaths. When the patient triggers a breath or the operator initiates a breath, fTotal may be higher than the Rate setting. |
| I:E | Inspiratory:expiratory ratio.
Ratio of the patient’s inspiratory time to expiratory time for every breath cycle. This includes both mandatory and spontaneous breaths. I:E may differ from the set I:E ratio if the patient breathes spontaneously. |
| TE (s) | Expiratory time.
In mandatory breaths, TE is measured from the start of exhalation until the set time has elapsed for the switch to inspiration.
In spontaneous breaths, TE is measured from the start of exhalation, as dictated by the ETS setting, until the patient triggers the next inspiration. TE may differ from the set expiratory time if the patient breathes spontaneously. |
| TI (s) | Inspiratory time.
In mandatory breaths, TI is measured from the start of breath delivery until the set time has elapsed for the switch to exhalation.
In spontaneous breaths, TI is measured from the patient trigger until the flow falls to the ETS setting for the switch to exhalation. TI may differ from the set inspiratory time if the patient breathes spontaneously. |
Parameter (unit) | Definition
--- | ---
Other calculated and displayed parameters

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR Timer</td>
<td>Displayed as an MMP during CPR ventilation, shows how long CPR ventilation has been on. For details, see Section 10.9.</td>
</tr>
<tr>
<td>Cstat (ml/cmH2O)</td>
<td>Static compliance of the respiratory system, including lung and chest wall compliances, calculated using the LSF method. Cstat can help diagnose changes in elastic characteristics of the patient’s lungs. Actively breathing patients can create artifact or noise, which can affect the accuracy of these measurements.</td>
</tr>
<tr>
<td>Oxygen (%)</td>
<td>Oxygen concentration of the delivered gas. It is measured by an O2 sensor in the inspiratory pneumatics. This parameter is not displayed if the O2 sensor is not installed, is defective, is not a genuine Hamilton Medical part, or if oxygen monitoring is disabled.</td>
</tr>
</tbody>
</table>
| P0.1 (cmH2O) | Airway occlusion pressure. The pressure drop during the first 100 ms when a breath is triggered. P0.1 indicates the patient’s respiratory drive and patient inspiration effort. P0.1 applies only to patient-triggered breaths. A P0.1 value of -3 cmH2O indicates a strong inspiratory effort, and a value of -5 cmH2O indicates an excessive effort, possibly because the patient is “air hungry” (peak inspiratory flow or total ventilatory support is inadequate) or has an excessive drive. If P0.1 is below -3 cmH2O:
 - Increase pressure or volume settings (depending on mode)
 - Increase %MinVol (ASV mode only)
 - Shorten P-ramp |
<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
</table>
| **PTP**
(cmH2O*s) | Inspiratory pressure time product. The measured pressure drop required to trigger the breath multiplied by the time interval until the **PEEP/CPAP** level is reached at the beginning of inspiration. **PTP** is valid for patient-initiated breaths only, and indicates work by the patient to trigger the breath. The work depends on:
 • The intensity of the patient’s effort
 • The trigger sensitivity
 • The volume and resistance of the breathing circuit

 PTP does not indicate total patient work but is a good indicator of how well the ventilator is adjusted for the patient.
 If **PTP** values increase, do the following:
 • Increase trigger sensitivity
 • Decrease **P-ramp** |
| **RCexp**
(s) | Expiratory time constant. The rate at which the lungs empty, as follows: Actual **TE**, % emptying
 1 x **RCexp**, 63%
 2 x **RCexp**, 86.5%
 3 x **RCexp**, 95%
 4 x **RCexp**, 98%
 RCexp is calculated as the ratio between **VTE** and flow at 75% of the **VTE**. Normal values in intubated adult patients:
 • Short, < 0.6 seconds: restrictive disease (ARDS, atelectasis, chest wall stiffness)
 • Normal, 0.6 to 0.9 seconds: normal compliance and resistance, or combined decreased compliance and increased resistance
 • Long, > 0.9 seconds: obstructive disease (COPD, asthma), bronchospasam, ET tube obstruction, or incorrect positioning
 Use **RCexp** to set the optimum **TE** (Goal: **TE** ≥ 3 x **RCexp**):
 • *With passive patients:* Adjust Rate and I:E
 • *With active patients:* Increase ΔPsupport and/or **ETS** to achieve a longer **TE**
 These actions may reduce the incidence of AutoPEEP. |
<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinsp (cmH2O / (l/s))</td>
<td>Resistance to inspiratory flow caused by the endotracheal tube and the patient's airways during inspiration. It is calculated using the LSF method applied to the inspiratory phase. Also displayed in the Dynamic Lung panel. Actively breathing patients can create artifact or noise, which can affect the accuracy of these measurements.</td>
</tr>
<tr>
<td>RSB (1 / (l*min))</td>
<td>Rapid shallow breathing index. The total breathing frequency (fTotal) divided by the exhaled tidal volume (VTE). Because a patient with dyspnea typically takes faster and shallower breaths than a non-dyspnoeic patient, RSB is high in the dyspnoeic patient and low in the non-dyspnoeic patient. RSB is often used clinically as an indicator of a ventilated patient's readiness for weaning. RSB is only significant for spontaneously breathing patients weighing more than 40 kg and is only shown if 80% of the last 25 breaths were spontaneous.</td>
</tr>
<tr>
<td>Ventilation time</td>
<td>Displayed in the Controls > Patient window, shows how long the patient has been ventilated. For details, see Section 8.6.</td>
</tr>
<tr>
<td>Humidifier related</td>
<td></td>
</tr>
<tr>
<td>T Y-piece (°C)</td>
<td>For HAMILTON-H900 humidifier only. See Table 11-5.</td>
</tr>
<tr>
<td>T humidifier (°C)</td>
<td>For HAMILTON-H900 humidifier only. See Table 11-5.</td>
</tr>
<tr>
<td>CO2 related</td>
<td></td>
</tr>
<tr>
<td>FetCO2 (%)</td>
<td>Fractional end-tidal CO2 concentration. Permits assessment of PaCO2 (arterial CO2). Note that it is inaccurate in pulmonary embolism. Available when a CO2 sensor is connected and enabled.</td>
</tr>
<tr>
<td>PetCO2 (mmHg)</td>
<td>End-tidal CO2 pressure. The maximum partial pressure of CO2 exhaled during a tidal breath (just before the start of inspiration). It represents the final portion of air that was involved in the exchange of gases in the alveolar area, thus providing a reliable index of CO2 partial pressure in the arterial blood under certain circumstances. PetCO2 does not reflect PaCO2 in the case of a pulmonary embolism. Available when a CO2 sensor is connected and enabled.</td>
</tr>
</tbody>
</table>
About the monitored parameters

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>slopeCO₂ (%CO₂/l)</td>
<td>Slope of the alveolar plateau in the PetCO₂ curve, indicating the volume/flow status of the lungs. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>V'alv (ml/min)</td>
<td>Alveolar minute ventilation. Permits assessment of actual alveolar ventilation (as opposed to minute ventilation). Valv * f (normalized to 1 min) Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>V'CO₂ (ml/min)</td>
<td>CO₂ elimination. Net exhaled volume of CO₂ per minute. Permits assessment of metabolic rate (for example, it is high with sepsis) and treatment progress. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>VDaw (ml)</td>
<td>Airway dead space. Gives an effective, in-vivo measure of volume lost in the conducting airways. A relative increase in dead space points to a rise in respiratory insufficiency and can be regarded as an indicator of the current patient situation. Patients with high dead space values are at particular risk if the muscles also show signs of fatigue. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>VDaw/VTE (%)</td>
<td>Airway dead space fraction at the airway opening. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>VeCO₂ (ml)</td>
<td>Exhaled CO₂ volume, updated breath by breath. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>ViCO₂ (ml)</td>
<td>Inspired CO₂ volume, updated breath by breath. Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
<tr>
<td>Vt Alv (ml)</td>
<td>Alveolar tidal ventilation. VTE - VDaw Available when a CO₂ mainstream sensor is connected and enabled.</td>
</tr>
</tbody>
</table>
8.6 Viewing patient ventilation time

The Controls > Patient window displays a timer that shows how long the patient has been ventilated.

Figure 8-21. Ventilation time

The timer records time as follows:

- The timer starts when you start ventilation.
- When you enter Standby, the timer pauses. It picks up again from the last value when you exit Standby and return to active ventilation.
- When you set up a new patient in the Standby window, and start ventilation, the timer resets to 0.
- When you select Last patient in the Standby window, the timer continues from the last total time recorded.
- When you touch Reset, the timer resets to 0.

When the timer is reset, an entry is made to the Event log recording the time of the reset, as well as how long the ventilator had been running prior to the reset.

To reset the timer to 0
1. Touch Controls.
2. In the Controls window, touch the Patient tab.
3. Touch Reset.

The timer starts again at 00d 00h 00min.

8.7 Viewing device-specific information

The System > Info windows display device-specific information including serial number, model, operating hours, hours since startup, battery capacity, oxygen consumption, software version, and installed options.

The System > Info > About window provides information about third-party open source libraries that were used to develop the ventilator software.

To view device-specific information
1. Touch System.
2. If needed, touch the Info tab.
9

Responding to alarms

9.1 Overview ... 182
9.2 About the alarm buffer .. 186
9.3 Adjusting alarm loudness (volume) ... 188
9.4 Troubleshooting alarms .. 188
9.1 Overview

Operator-adjustable and nonadjustable alarms together with a visual alarm indicator notify you of conditions that require your attention.

These alarms are categorized as high, medium, or low priority, as described in Table 9-1. The ventilator’s visual alarm indications are described in Figure 9-1.

Additional alarms conditions are associated with technical fault and technical note alarms, as well as informational messages.

You can view active alarms in the alarm buffer (Figure 9-2). Information about the alarm is also stored in the Event log.

Alarms are indicated in the color associated with the alarm priority as follows:

- The alarm lamp on top of the ventilator lights and flashes.
- The message bar on the ventilator display is shown in color and displays the alarm text.
- An MMP associated with an active alarm is shown in color, together with a colored bar to the right of the affected parameter.
- In the Monitoring window, a parameter associated with an active alarm is shown in the associated color.
- Any affected parameter shown in the Dynamic Lung is shown in color.
- The Humidifier quick access icon is shown in the associated color when a related alarm is active.
- The alarm text is displayed in the alarm buffer.

In the event of certain technical failures, the ventilator switches to Safety ventilation (Section 7.6). This gives you time to arrange for corrective actions, including organizing a replacement ventilator.

When an alarm condition is serious enough to possibly compromise safe ventilation, the device defaults to the Ambient state (Section 7.6). The ventilator immediately stops gas flow to the patient. The release valve and expiratory valve are opened, letting the patient breathe room air unassisted.

When reviewing alarms, you can access on-screen alarm troubleshooting help in the Alarms > Buffer window. See Section 9.2.1.

For details on setting alarm limits, see Section 5.7.

Table 9-1 describes the audio and visual characteristics of these types of alarms and provides guidance on how to respond.
<table>
<thead>
<tr>
<th>Alarm type</th>
<th>Message bar</th>
<th>Alarm lamp / Alarm status indicator</th>
<th>Audio</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td>Red, with alarm message</td>
<td>Red, flashing</td>
<td>A sequence of 5 beeps, repeated until the alarm is reset. If the audible alarm is not silenced during the first minute, the continuous-tone buzzer also sounds.</td>
<td>The patient’s safety is compromised. The problem needs immediate attention.</td>
</tr>
<tr>
<td>Medium priority</td>
<td>Yellow, with alarm message</td>
<td>Yellow, flashing</td>
<td>A sequence of 3 beeps, repeated periodically.</td>
<td>The patient needs prompt attention.</td>
</tr>
<tr>
<td>Low priority</td>
<td>Yellow, with alarm message</td>
<td>Yellow, solid</td>
<td>Two sequences of beeps. This is not repeated.</td>
<td>Operator awareness is required.</td>
</tr>
<tr>
<td>Technical fault</td>
<td>Red, with the text, Safety ventilation, Safety mode, or Technical fault: xxxxxx</td>
<td>Red, flashing</td>
<td>Same as for high-priority alarm, if technically possible. At a minimum, a continuous buzzer tone. The buzzer cannot be silenced.</td>
<td>The ventilator enters Safety ventilation, or, if it cannot safely ventilate, the Ambient state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Provide alternative ventilation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Turn off the ventilator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Have the ventilator serviced.</td>
</tr>
<tr>
<td>Alarm type</td>
<td>Message bar</td>
<td>Alarm lamp / Alarm status indicator</td>
<td>Audio</td>
<td>Action required</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>Technical event</td>
<td>Depends on severity of the event. Can be low, medium, or high.</td>
<td>Same as the associated alarm level</td>
<td>Same as the associated alarm level.</td>
<td>A technical alarm cannot typically be corrected by the operator. Ventilation continues. If needed, have the ventilator serviced.</td>
</tr>
<tr>
<td>Technical note</td>
<td>Provides technical information about a hardware or software issue, displayed only in the Event log.</td>
<td>--</td>
<td>--</td>
<td>No action is required.</td>
</tr>
</tbody>
</table>
9.1.1 Alarm limit indicators

Alarm limits are shown in the Alarms > Limits windows.

When an alarm limit is disabled, that is, no limit applies, the device shows the following Alarm Off symbol:

For details about setting alarm limits, see Section 5.7.

9.1.2 Responding to an alarm

WARNING

When an Audio pause is active, the following critical alarms still generate an audible alarm:

- Apnea
- External power loss
- Oxygen supply failed
- Technical events: 231003, 243001, 243002, 283007, 284003, and 285003
- All technical faults

CAUTION

Carefully set alarm limits according to the patient’s condition. Setting limits too high or too low defeats the purpose of the alarm system.

NOTICE

The factory default alarm limit settings are set in line with the selected patient group, allowing for unattended monitoring. These settings, however, can never replace individual review of the patient and adjustment of alarm limits based on their condition.

Alarms may result from either a clinical condition or an equipment issue. In addition, a single alarm condition can generate multiple alarms.

Your search for the causes of the alarm condition should be assisted by, but not limited to, the alarm messages displayed.

\[^{80}\text{Not available in all markets.}\]
To respond to an alarm

1. Approach the patient immediately.

2. Secure sufficient and effective ventilation for the patient.

 You can pause the audible alarm, if appropriate and available. See Section 9.1.3.

3. Correct the alarm condition from the alarm messages. See Section 9.4.

 For an informational message, wait three (3) seconds for the message to disappear, or follow the message instructions as appropriate.

 For a technical fault, remove the ventilator from use, note the fault code, and have the ventilator serviced.

4. If appropriate, readjust the alarm limit.

9.1.3 Temporarily silencing an alarm

One component of an alarm is the audible alarm sound. With most alarms, you can pause (silence) the alarm sound for two minutes at a time.

To temporarily silence an alarm

- Press (Audio pause) on the front of the ventilator (Figure 10-2).

 The audible ventilator alarm is muted for two minutes. Pressing the key a second time cancels the Audio pause.

The indicator light next to the Audio pause key is continuously lit red while an Audio pause is active.

The display also indicates an Audio pause is engaged as follows (Figure 9-1):

- The Audio pause indicator is displayed.
- A countdown timer on the main display shows the remaining time for the Audio pause.

When the time expires and the issue has not yet been resolved, an audible alarm sounds again.

9.2 About the alarm buffer

The alarm buffer shows up to 5 active alarm messages or up to 6 inactive alarm messages:

- The alarm buffer shows active alarms as they are generated (Figure 9-2). The alarm messages also alternate in the message bar. Active alarms are shown in wide color-coded boxes.

- If no alarms are active, the alarm buffer shows the most recent inactive alarms (Figure 9-3). Inactive alarms are shown in narrow color-coded boxes. In addition, the i-icon is visible on the display.

- Touch an alarm entry to view troubleshooting help directly on the display.

To view alarms

- Open the Alarms > Buffer window by doing one of the following:

 – Touch an active alarm in the message bar at the top of the display (Figure 9-2).

 – Touch the inactive alarm indicator (the i-icon) (Figure 9-3).

 – Touch the Audio pause indicator at the bottom right of the display (Figure 9-1).

 – Touch Alarms > Buffer.

The most recent alarm is at the top of the list.
To clear the list of inactive alarms

- Touch the **Reset** button (Figure 9-3).
 Closing the alarm buffer does not erase its contents.

Figure 9-2. Alarm buffer with active alarms

![Alarm buffer with active alarms](image)

1. Alarms
2. Buffer
3. Alarm text in message bar

Figure 9-3. Alarm buffer with inactive alarms

![Alarm buffer with inactive alarms](image)

1. Alarms
2. Buffer
3. i-icon
4. Inactive high-priority alarm (red)
5. Inactive low- or medium-priority alarm (yellow)

9.2.1 Accessing on-screen troubleshooting help

Troubleshooting help is available for alarms.

To view the help for an alarm

1. Touch the alarm message in the buffer.
 A **Help** window opens in the buffer, providing troubleshooting information for the selected alarm.

2. To view help for another alarm, touch the next alarm message.
 The contents of the **Help** window refresh with the new information.
 The alarm is displayed as long as the window is open even if the alarm is no longer active.

3. Touch **X** to close the **Help** window.

Figure 9-4. On-screen help window

![On-screen help window](image)
9.3 Adjusting alarm loudness (volume)

WARNING

Be sure to set the auditory alarm loudness above the ambient sound level. Failure to do so can prevent you from hearing and recognizing alarm conditions.

You can set the loudness of the audible alarm. By default, the loudness is set to 5.

If you set the loudness below the default value during a patient session, the value is reset to the default upon:

- Setting up a new patient
- Turning the ventilator off and on again

You cannot set the loudness below the minimum level configured for the device (Chapter 13).

To adjust the alarm loudness

1. Touch **System > Settings**.
2. Touch the **Loudness** button if the **Loudness** window is not already displayed.
3. Activate and adjust the **Loudness** control, as needed.
4. Touch **Test** to check the loudness level.
 Ensure the loudness level is above the ambient sound level.
5. Repeat the process as required, and close the window.

![Figure 9-5. Alarm loudness control](image)

9.4 Troubleshooting alarms

Table 9-2 is an alphabetical list of the alarm messages displayed by the HAMILTON-C1, along with their definitions and suggested corrective actions.

These corrective actions are sequenced to correct the most probable issue or to present the most efficient corrective action first. The proposed actions, however, may not always correct the particular problem.

If your issue is not resolved after performing the recommended tasks, contact your Hamilton Medical authorized service personnel.

For additional information, see the appropriate documentation as follows:

- For SpO2-related alarms, see the Pulse Oximetry Instructions for Use.
- For HAMILTON-H900-related alarms, see Section 11.1.6 and the HAMILTON-H900 Instructions for Use.
Table 9-2. Alarms and other messages

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient state</td>
<td>The inspiratory and expiratory channels are opened, letting the patient breathe room air unassisted. See Section 7.6.</td>
<td>Provide alternative ventilation immediately.</td>
</tr>
<tr>
<td>Apnea ventilation ended</td>
<td>Low priority. Backup mode was reset, and ventilator is again ventilating in its original support (pre-apnea) mode.</td>
<td>No action required.</td>
</tr>
</tbody>
</table>
| Apnea ventilation | Low priority. Apnea backup ventilation has started. No breath delivered for the operator-set apnea time. Apnea backup ventilation is on. | • Check patient condition.
• Check trigger sensitivity.
• Check the control settings for the backup mode.
• Consider changing the mode. |
| Apnea | High priority. No patient trigger within the operator-set apnea time in APVsimv, SPONT, DuoPAP, APRV, or NIV mode. Apnea backup is off. | • Check patient condition.
• Check trigger sensitivity.
• Consider changing the mode. |
| ASV: Cannot meet target | Low priority. The operator-set %MinVol cannot be delivered, possibly due to setting conflicts or lung-protective rules. | • Check patient condition.
• Check the Plimit setting and adjust if appropriate.
• Consider a mode change. However, be aware that other modes may not enforce lung-protective rules. |
| Battery 1: Calibration required | Low priority. The battery requires calibration. You may continue to use the battery. | Have the ventilator serviced to calibrate the battery. |
| Battery 1: Defective | High priority. Battery is defective. Ventilation continues if an alternative power source is connected. | • Replace battery.
• Prepare alternative ventilation.
• If the problem still persists, have the ventilator serviced. |
| Battery 1: Replacement required| Low priority. Battery capacity is insufficient for reliable operation and must be replaced immediately. | Have the ventilator serviced to replace the battery. |

81 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Battery 1: Temperature high | **High priority.** The battery temperature is higher than expected. | • Remove the ventilator from the sun or other heat source.
• Provide alternative ventilation.
• Have the ventilator serviced to replace the battery. |
| Battery 1: Wrong battery | **Low priority.** The battery in use is not the correct battery for this ventilator. | Have the ventilator serviced to replace the battery. |
| Battery communication error | **High priority.** Battery data is not available. Ventilation continues. | Have the ventilator serviced to replace the battery. |
| Battery low | The Battery low alarm has different levels of priority depending on battery age and condition. The alarm priority levels are defined as follows:
High priority. The ventilator is running on battery power, and the battery charge is critically low. You have a minimum of 5 minutes operating time left.
If the high-priority Battery low alarm occurs when starting up the ventilator, you may have less than 5 minutes of operating time remaining.
Medium priority. The ventilator is running on battery power and the battery charge is low.
Low priority. The ventilator is running on primary power and the battery charge is low. | • Connect the ventilator to a primary power source.
• Install charged battery.
• If necessary, be prepared to provide alternative ventilation. |
| Battery power loss | **High priority.** No battery is present. | Have the ventilator serviced to install the battery. |
Troubleshooting alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Battery totally discharged | *High priority.* The battery charge level is below 5%. The ventilator switches to the Ambient state. | • Connect the ventilator to primary power (AC). Connecting to primary power also charges the battery.
• Immediately provide alternative ventilation until the issue is resolved.
• If the problem still persists, have the ventilator serviced. |
| Blower fault | *High priority.* A blower malfunction was detected. A technical alarm cannot typically be corrected by the operator. The ventilator switches to the Ambient state. | • Immediately provide alternative ventilation.
• Have the ventilator serviced. |
| Blower service required | *Low priority.* The blower has reached the end of its lifespan. | Have the ventilator serviced. |
| Buzzer defective | *High priority.* A buzzer malfunction was detected. A technical alarm cannot typically be corrected by the operator. | • Restart device.
• Provide alternative ventilation until the issue is resolved.
• If the problem persists, have the ventilator serviced. |
| Check CO2 airway adapter | *Low priority.* Adapter disconnection, optical block, or adapter type changed. | • Check patient condition.
• Check the airway adapter for excess moisture accumulation /contamination by secretions.
• Replace / perform zero calibration on airway adapter. |
| Check CO2 sampling line | *Low priority.* The CO2 sidestream sensor sampling line is occluded by water. | • Check patient condition.
• Replace sampling line. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Check flow sensor for water\(^{82}\) | *Neonatal only.* Water is detected inside the flow sensor, which is affecting measurements.
Medium priority. You must acknowledge the alarm within 90 seconds by pressing the Audio pause key. This gives you time to remove any accumulated water from the flow sensor and tubing.
If the alarm is not acknowledged within 90 seconds, the alarm becomes *high priority.*
The alarm is active until flow sensor measurements are again within the expected range.
You can specify alarm sensitivity or disable the alarm in Configuration. See Section 13.3.5. | • Remove all water from the flow sensor and flow sensor tubing.
• You *must* position the flow sensor at a ≥ 45° angle to avoid water accumulation.
• Adjust the FS alarm sensitivity control. |
| Check flow sensor | *High priority.* Flow sensor measurements are out of the expected range.
If the alarm continues for 3 consecutive breath cycles, the External flow sensor failed alarm is generated and the ventilator switches to Sensor Failure mode (Section 7.6.1). | • Make sure the flow sensor is the correct type for the patient (*Adult/Ped* or *Neonatal*).
• Check the flow sensor connection to the ventilator.
• Connect and calibrate a new flow sensor. |
| Check flow sensor tubing | *High priority.* The flow sensor tubes are disconnected or occluded.
If the alarm continues for 3 consecutive breath cycles, the External flow sensor failed alarm is generated and the ventilator switches to Sensor Failure mode (Section 7.6.1). | • Check the flow sensor connection to the ventilator.
• Connect and calibrate a new flow sensor. |

\(^{82}\) Not available in all markets.
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Check for blockage | *Medium priority.* Internal pressure is above 45 cmH₂O in HiFlowO₂. | • Observe the patient
If the pressure increases further and exceeds 50 cmH₂O, the alarm becomes *high priority*, flow stops, and the pressure is released.
| | | • Check patient interface for blockage.
If no blockage is observed, consider reducing the flow to decrease pressure.
• Check breathing circuit limbs and tubing for kinks. |
| Check patient interface| *High priority.* Generated when using a speaking valve and the Vt low or Low pressure alarm is active. | Check for:
• Disconnection
• Whether cuff is fully deflated
• Upper airway occlusion
• Speaking valve is operating properly |
| Check Plimit | *Low priority.* Inspiratory pressure, including PEEP/CPAP, is above the pressure limit (Plimit). Does not apply in APVcmv, APVsimv, or ASV modes. | • Check the patient for adequate ventilation.
• Adjust Plimit and/or the pressure control settings, as appropriate. |
<p>| Check settings | Low priority. A change to a control or alarm setting was not saved. | Check and confirm settings, including alarms. |
| Circuit calibration needed | Medium priority, Low after silence. The ventilator does not have correct calibration data. Only active in nCPAP and nCPAP-PC modes. | Calibrate the neonatal breathing circuit (Section 6.2.2). |</p>
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| CO2 calibration needed | *Low priority.* A previous sensor zero calibration failed. | Perform the following checks, repeating the calibration after each one, until calibration is successful:
 • Clean or replace airway adapter.
 • Perform a zero calibration of the sensor, making sure there is no source of CO2 near the airway adapter.
 • Replace the airway adapter.
 • Replace the CO2 sensor.
 • If the problem persists, have the ventilator serviced. |
| CO2 sensor defect | *Low priority.* The CO2 sensor signal indicates a hardware error or a third-party sensor is installed. | • Disconnect the sensor from the CO2 module. Wait a few seconds, and reconnect.
 • Perform a zero calibration of the sensor. Ensure the sensor is attached to the airway adapter during zero calibration.
 • Replace the CO2 sensor. Make sure the sensor is a genuine Hamilton Medical part. |
| CO2 sensor disconnected | *Low priority.* The CO2 module is installed, but there is no signal from the CO2 sensor. CO2 monitoring is enabled. | • Make sure a CO2 sensor is connected.
 • Check CO2 sensor connections (CO2 sensor cable to module, CO2 module to ventilator).
 • If the problem persists, have the ventilator serviced. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| CO2 sensor over temperature | Low priority. The temperature at the CO2 sensor is too high. | • Check whether the sensor is affected by an external heating source.
• Remove the sensor from the airway, and disconnect the sensor from the CO2 module. Reconnect.
• Verify that system is running within the specified environmental conditions. Check for excessive airway temperature, which could be caused by defective humidifier, heater wire, or probe. |
| CO2 sensor warmup | Low priority. The CO2 operating temperature has not yet been reached or is unstable. | Wait for the sensor to warm up. |
| CO2: Poor signal | Low priority. The CO2 sensor signal quality is poor. | • Check patient condition.
• Check CO2 sensor and adapter connections.
• Ensure that airway adapters are not in a horizontal position relative to the floor to reduce accumulation of patient secretions.
If accumulation occurs, remove the adapter, rinse with sterile water, and reconnect. |
| CPR ON | Low priority. CPR ventilation is on. The alarm limits for ExpMinVol, fTotal, and Vt are set to their minimum and maximum values. | • Check and confirm settings, including alarms.
• To stop CPR ventilation, press the Power/Standby key or change the ventilation mode. |
| Device temperature high | High priority. The internal temperature of the ventilator is higher than expected. | • Remove the ventilator from the sun or other heat source.
• Check the cooling fan filter and fan.
• Prepare alternative ventilation.
• Have the ventilator serviced. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Disconnection on patient side | High priority. VTE is less than one-eighth of the delivered VTI, and delivered VTI exceeds 50 ml. | • Check patient condition.
• Check the breathing circuit for a disconnection between the patient and the flow sensor, or for other large leaks (for example, ET tube). |
| | Applicable in invasive modes. For APRV and DuoPAP modes, only applicable during the pressure phase.
For alarm details when using a speaking valve, see Table 10-1. | |
| Disconnection on ventilator side | High priority. Measured VTI at the flow sensor is less than one-half of the delivered VTI, and delivered VTI exceeds 50 ml. | • Check the expiratory valve:
 – Check the condition of the expiratory valve set. If anything is defective, replace.
 – Check whether the expiratory valve is affected by any nebulizing agent.
 – Make sure that the expiratory valve is properly installed.
 – Check whether there is a disconnection at the expiratory valve.
• Replace the expiratory valve.
• Check the flow sensor. If needed, replace the flow sensor. |
| | Applicable in invasive modes. For alarm details when using a speaking valve, see Table 10-1. | |
| Exhalation obstructed | High priority. Either the end-expiratory pressure is too high or the end-expiratory flow is too low.
Note that you must use an inspiratory filter to prevent contamination. The ventilator may be contaminated if no inspiratory filter is used.
Not active when using HiFlowO2. | • Check patient condition.
• Check the expiratory limb for occlusion.
• Check the expiratory valve set. Replace if needed.
• Check the flow sensor tubes for occlusion.
• Adjust breath timing controls to increase the expiratory time.
• Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| External connections disabled | *Medium priority. Low after silence.* The Connectivity Module is turned off. Repeated connection attempts have failed. Ventilation can continue, but connection with other devices is not possible. | • If no patient is connected, restart the ventilator.
• If the problem persists, have the ventilator serviced. |
| External flow sensor failed | *High priority.* The external flow sensor does not work properly. The alarm is generated when either the Check flow sensor or Check flow sensor tubing alarm is active for 3 consecutive breath cycles. The ventilator switches to Sensor Failure mode (Section 7.6.1). | • Check flow sensor for excessive secretions and/or water accumulation.
• Provide alternative ventilation and clean the flow sensor with sterile water.
• Connect and calibrate a new flow sensor. |
| Fan failure | *Medium priority.* There is a problem with the cooling fan. | • Provide alternative ventilation until the issue is resolved.
• Disconnect the ventilator from the patient.
• Have the ventilator serviced. |
| Flip the flow sensor | *Medium priority.* Either the flow sensor is connected to the breathing circuit facing the wrong direction or the flow sensor connections to the ventilator are reversed. Ventilation continues, but the ventilator corrects for the reversed signal. | • Check the flow sensor. The end marked PATIENT faces the patient.
• Reverse the flow sensor tube connections on the ventilator.
• The blue tube attaches to the blue connector. The clear tube attaches to the white connector. |
| Flow sensor calibration needed | *High priority during ventilation, low in Standby.* The ventilator does not have correct calibration data or flow sensor cannot be calibrated.
In Standby, may indicate that the patient group has changed.
Note that flow, volume, and pressure measurements are less accurate with an uncalibrated flow sensor. | • Ensure the correct flow sensor for the selected patient group is attached to the breathing circuit.
• Calibrate the flow sensor as soon as possible. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function key not</td>
<td>Medium priority. The function key is defective. Ventilation continues.</td>
<td>• Turn off the ventilator using the Power/Standby button on the back of the device.</td>
</tr>
<tr>
<td>operational</td>
<td></td>
<td>• Have the ventilator serviced.</td>
</tr>
<tr>
<td>High Flow</td>
<td>Medium priority, Low after silence. Flow has reached the set limit.</td>
<td>• Check the patient interface and breathing circuit for disconnection or excessive leakage.</td>
</tr>
<tr>
<td></td>
<td>Only active in nCPAP and nCPAP-PC modes.</td>
<td>• Check ventilator settings and alarm limits.</td>
</tr>
<tr>
<td>High frequency</td>
<td>Medium priority. The measured fTotal exceeds the set alarm limit.</td>
<td>• Check the patient for adequate ventilation (VTE).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check alarm limits.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the trigger sensitivity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the ventilator is in ASV mode, see Section 7.8.</td>
</tr>
<tr>
<td>High minute volume</td>
<td>High priority. The measured ExpMinVol exceeds the set alarm limit.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check and confirm settings, including alarms.</td>
</tr>
<tr>
<td>High oxygen</td>
<td>High priority.</td>
<td>• Calibrate the O2 sensor.</td>
</tr>
<tr>
<td></td>
<td>One of the following has occurred:</td>
<td>• Install a new O2 sensor.</td>
</tr>
<tr>
<td></td>
<td>• If the Oxygen alarm limits are set automatically, the measured oxygen</td>
<td>• Check alarm limits (if set manually).</td>
</tr>
<tr>
<td></td>
<td>is more than 5% (absolute) above the current Oxygen control setting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If the Set Oxygen alarm limits manually checkbox is selected, the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>measured oxygen is above the set upper limit.</td>
<td></td>
</tr>
<tr>
<td>Alarm</td>
<td>Definition</td>
<td>Action needed</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| High PEEP | Medium priority. Monitored PEEP exceeds (set PEEP + 5 cmH2O) for two consecutive breaths. For DuoPAP and APRV only: Alarm applies to both P high and P low settings. The alarm sounds when the monitored P high exceeds (set P high + 5 cmH2O) or monitored P low exceeds (set P low + 5 cmH2O) for two consecutive breaths. If T low is set to < 3 seconds, the High PEEP alarm is disabled for P low settings. This reduces the incidence of false positive alarms. | • Check patient condition.
• Check and confirm settings, including alarms.
• Check the expiratory valve set for possible obstructions.
• Check for obstructions in the expiratory limb.
• Check the flow sensor tubes for occlusion. |
| High pressure during sigh⁸¹ | High priority. A sigh cannot be fully delivered because excessive inspiratory pressure would be required. The sigh is partially delivered. | • Check patient condition.
• Check the artificial airway of the patient for kinks and occlusions.
• Check the breathing circuit limbs and flow sensor tubes for kinks and occlusions.
• Consider disabling the Sigh function. |
| High pressure | High priority, Low after Audio pause is activated. The measured inspiratory pressure exceeds the set high Pressure alarm limit. The ventilator immediately stops gas flow to the patient and opens the expiratory valve to reduce pressure to the PEEP/CPAP level. If the pressure reaches 15 cmH2O above the high Pressure alarm limit for longer than 5 seconds, the ventilator opens the release valve. If the pressure reaches 15 cmH2O above the high Pressure alarm limit for longer than 7 seconds, the ventilator enters the Ambient state. | • Check patient condition.
• Adjust the Pressure alarm limit.
• Check the artificial airway of the patient for kinks and occlusions.
• Check the breathing circuit limbs and flow sensor tubes for kinks and occlusions.
• Provide alternative ventilation once the ventilator enters the Ambient state. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Inspiratory volume limitation | *Medium priority.* The delivered Vt is more than 1.5 times the set high Vt alarm limit. Pressure is reduced to PEEP level. The APV controls reduce the pressure for the next breath by 3 cmH2O. Disabled in noninvasive modes. For alarm details when using a speaking valve, see Table 10-1. | • Reduce the ΔPsupport setting.
• Adjust the high Vt alarm limit. |
| Invalid communication board | *Low priority.* The installed communication board is invalid. | • Contact your Hamilton Medical technical representative.
• Have the ventilator serviced. |
| IRV | *Low priority.* The set I:E ratio is above 1:1, leading to inverse ratio ventilation. Does not apply in PSIMV+PSync, SPONT, NIV, or NIV-ST modes, or in HiFlowO2. | Check the timing control settings. |
| JTAG not working | *Low priority.* A hardware component failed the self-test during startup. | Remove the ventilator from use and have it serviced. |
| Loss of external power | *Low priority.* The ventilator is running on battery power due to loss of a primary power source. | • Silence the alarm.
• Check integrity of connection to primary power source.
• Check battery status.
• Prepare for possible power loss.
• Provide alternative ventilation until the issue is resolved. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Loss of PEEP | *Medium priority.* One of the following conditions is in effect: | • Check patient condition.
• Pressure during exhalation is below (set PEEP/CPAP – 3 cmH2O) for more than 10 seconds
• Measured end-expiratory pressure is below (set PEEP/CPAP – 3 cmH2O) for two consecutive breaths
• Check patient condition.
• Check the breathing circuit for leaks. Replace the breathing circuit, if necessary.
• Check the condition of the expiratory valve set. If anything is defective, replace. |
| Loudspeaker defective | *High priority.* A loudspeaker malfunction was detected. A technical alarm cannot typically be corrected by the operator. Ventilation continues. | • Check patient condition.
• Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced. |
| Low frequency | *Medium priority.* Measured f_{Total} is below the set alarm limit. | • Check patient condition.
• Adjust the low f_{Total} alarm limit. |
| Low minute volume | *High priority.* Measured ExpMinVol is below the set alarm limit. | • Check patient condition.
• Check the breathing circuit and artificial airway of the patient for leaks and/or disconnection.
• Check and confirm settings, including alarms. |
| Low oxygen | *High priority.* | • Check patient condition.
• Check the oxygen supply. Provide an alternative source of oxygen, if necessary.
• Calibrate the O2 sensor.
• Provide alternative ventilation and install a new O2 sensor. |

Alarm Definitions:
- **Medium priority**: Indicates a less critical situation where immediate action is not necessarily required.
- **High priority**: Indicates a critical situation requiring immediate attention.
- **Low priority**: Indicates a situation that may not require immediate action.
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low pressure</td>
<td>High priority. The set pressure during inspiration was not reached.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the breathing circuit for a disconnection between the patient and the flow sensor, or for other large leaks.</td>
</tr>
<tr>
<td>Maximum leak compensation</td>
<td>Low priority. The set Vt cannot be reached due to a leak.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td>In APVsimv and APVcmv modes only.</td>
<td>• Inspect the system for leaks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Suction the patient, if needed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure the high Pressure limit is appropriate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Switch to a different ventilation mode.</td>
</tr>
<tr>
<td>O2 sensor calibration needed</td>
<td>Low priority. O2 sensor calibration data is not within the expected range, or the sensor is new and requires calibration.</td>
<td>• Calibrate the O2 sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verify temperature settings are within environmental specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace O2 sensor if required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Have the ventilator serviced.</td>
</tr>
<tr>
<td>O2 sensor defective</td>
<td>Low priority. The O2 sensor is depleted.</td>
<td>Install a new O2 sensor.</td>
</tr>
<tr>
<td>O2 sensor missing</td>
<td>Low priority. There is no signal from the O2 sensor.</td>
<td>Install an O2 sensor or use an external monitor, according to ISO 80601-2-55.</td>
</tr>
<tr>
<td>O2 sensor not system compatible</td>
<td>Low priority. The incorrect type of O2 sensor is installed.</td>
<td>Ensure a Hamilton Medical O2 sensor is used and it is properly installed.</td>
</tr>
<tr>
<td>Obstruction</td>
<td>High priority. End-expiratory pressure > set PEEP/CPAP + 5, or Flow < 1 l/min. Only active in nCPAP and nCPAP-PC modes.</td>
<td>• Check the patient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the expiratory limb for occlusion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the expiratory valve set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the pressure line for occlusion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjust breath timing controls to increase the expiratory time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Have the ventilator serviced.</td>
</tr>
<tr>
<td>Options not found</td>
<td>High priority. Options were not found during startup.</td>
<td>• Restart device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the problem persists, have the ventilator serviced.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Definition</td>
<td>Action needed</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oxygen supply failed</td>
<td>High priority. Oxygen source flow is lower than expected.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the oxygen supply. Provide an alternative source of oxygen, if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the oxygen source/supply for potential leakage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide alternative ventilation until the issue is resolved.</td>
</tr>
<tr>
<td>Performance limited by high altitude</td>
<td>Medium priority, Low after silence. The airway pressure cannot be reached at the current altitude. As long as the device remains above the altitude limit, the pressure cannot be reached, and the alarm is active.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If at all possible, consider lowering altitude to reach the target performance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide alternative ventilation until the issue is resolved.</td>
</tr>
<tr>
<td>PetCO2 high</td>
<td>Medium priority. PetCO2 exceeds the set alarm limit.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check and confirm settings, including alarms.</td>
</tr>
<tr>
<td>PetCO2 low</td>
<td>Medium priority. PetCO2 is below the set alarm limit.</td>
<td>• Check patient condition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the breathing circuit and flow sensor/artificial airway of the patient for leaks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check and confirm settings, including alarms.</td>
</tr>
<tr>
<td>Pressure limit has changed</td>
<td>Low priority. The pressure limit setting (Plimit) has changed. Either the Plimit setting or the high Pressure alarm limit setting has been adjusted by the operator. Changing Plimit or the high Pressure alarm limit automatically changes the other: The high Pressure alarm limit is always 10 cmH2O greater than Plimit.</td>
<td>Make sure the pressure limit is high enough so that sufficient pressure can be applied for adequate breath delivery. If sufficient pressure cannot be applied, the Pressure limitation alarm is generated.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Definition</td>
<td>Action needed</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Pressure limitation | *Medium priority, Low after silence.* Inspiratory pressure, including PEEP/CPAP, is above the pressure limit (Plimit). The ventilator limits applied pressure, so the target pressure or volume may not be achieved. | - Check the patient for adequate ventilation.
- Check and confirm settings, including alarms. |
| Pressure not released | *High priority.* Airway pressure has exceeded the Pressure limit, and the pressure was not released via the expiratory valve after 5 seconds. The ventilator enters the Ambient state. | - Check expiratory valve and breathing circuit for kinks and occlusions.
- Provide alternative ventilation until the issue is resolved.
- Have the ventilator serviced. |
| Preventive maintenance required | *Low priority.* The device was last serviced more than 1 year ago.
The ventilator requires preventive maintenance. | Have the ventilator serviced as soon as possible. |
| Real-time clock failure | *Medium priority.* The date and time are not set. | Set the date and time (System > Settings window). |
| Release valve defective | *Low priority.* During the routine check of the ambient valve during the Leak test, the valve was found to be defective.
The alarm is reset when a Leak test is successfully passed.
Ventilation is not necessarily affected. | If the problem still persists, have the ventilator serviced as soon as possible. |
| Replace HEPA filter | *Low priority.* The air inlet HEPA filter shows increased resistance. | Replace the HEPA filter as soon as possible. |
| Replace O2 sensor | *High priority.* Communication error, O2 sensor is defective.
Ventilation is not necessarily affected. Oxygen concentration should not be affected by this issue. Ventilation can continue. | - Replace O2 sensor.
- If you cannot replace the O2 sensor, consider disabling it. |
| Safety mode | *Technical fault.* A hardware or software issue was detected.
The ventilator switches to Safety mode. | - Provide alternative ventilation until the issue is resolved.
- Have the ventilator serviced. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Safety ventilation | Technical fault. A hardware or software issue was detected. The ventilator switches to Safety ventilation. | • Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced. |
| Self test failed | High priority. The self test failed during startup. The Start ventilation button is unavailable.
Note that if this error occurs when the device is restarting from a complete power loss, the device enters the Ambient state. | • Restart device.
• If the problem persists, have the ventilator serviced.
• If the device enters the Ambient state, provide alternative ventilation and have the ventilator serviced. |
| SpeakValve OFF | Low priority. Speaking valve compatibility is deactivated. | Press the Audio pause key to confirm and resolve the alarm. |
| SpeakValve ON | Low priority. Speaking valve compatibility is activated. | • If a speaking valve is in use, no action required.
• If a speaking valve is not in use, turn off compatibility in the Controls > SpeakValve window. |
| Suctioning maneuver | Low priority. Ventilation suppression is active, and ventilator settings are being maintained, although the ventilator is not delivering breaths. | Resume ventilation when desired by first reconnecting the patient. |
| Technical event: xxxxxx | Low, medium, or high priority. A hardware or software issue was detected. A technical alarm cannot typically be corrected by the operator. Ventilation continues. | Have the ventilator serviced. |
| Technical fault: xxxxxx | Technical fault. A hardware or software issue was detected. The ventilator switches to the Ambient state or to Safety ventilation. | • Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced. |
| Technical state failed | Technical fault. There is a problem with the hardware configuration. Ventilation is not possible. | Have the ventilator serviced. |
| Touch not functional | Low priority. The touch screen is defective. | • Turn the ventilator off and on again.
• If the problem persists, have the ventilator serviced. |
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Definition</th>
<th>Action needed</th>
</tr>
</thead>
</table>
| Unknown part number | *Technical fault.* A hardware or software issue was detected. The ventilator switches to the Ambient state. | • Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced. |
| Vent outlet temperature high | *High priority.* Inspiratory temperature is too high. Ventilation continues, but if temperature stays high, the ventilator may enter the Ambient state. | • Check whether the room temperature exceeds the ventilator’s operating temperature limit.
• Check that the air intake on the device is not obstructed.
• Provide alternative ventilation until the issue is resolved.
• Have the ventilator serviced if temperature cannot be reduced. |
| Ventilation canceled | *Technical fault.* A hardware or software issue was detected. The ventilator switches to the Ambient state. | • Provide alternative ventilation until the issue is resolved.
• Contact your Hamilton Medical representative.
• Have the ventilator serviced. |
| Vt high | *Medium priority.* Measured VTE exceeds the set limit for 2 consecutive breaths.
In invasive modes, if the delivered tidal volume exceeds 150% of set high Vt alarm limit (Vt > 1.5 * high Vt alarm limit), the Inspiratory volume limitation alarm is generated. | • Check the pressure and volume settings for potential leaks and/or disconnections.
• Check and confirm settings, including alarms. |
| Vt low | *Medium priority.* Measured VTE is below the set limit for 2 consecutive breaths.
High priority. When speaking valve compatibility is activated. This alarm can indicate the cuff is still inflated. See Table 10-1. | • If a speaking valve is in use, ensure the cuff is deflated.
• Check patient condition.
• Check and confirm settings, including alarms.
• Check the breathing circuit and artificial airway of the patient for leaks, kinked limbs or tubing, or disconnection. |
Alarm | **Definition** | **Action needed**
--- | --- | ---
Wrong expiratory valve[^1] | *Medium priority, Low after silence.* The type of expiratory valve installed does not match the selected patient group, or no expiratory valve is installed. In addition to the alarm message, after attempting to start ventilation, the device displays a dialog box describing the risks of proceeding with the wrong valve. The alarm is recorded in the Events log and remains in the alarm buffer. | Install the appropriate expiratory valve. To start ventilating the patient, you must confirm that you are aware of the issue by selecting either **Accept** or **Decline** in the dialog box.
- By selecting **Accept**, you accept the risks associated with using the wrong valve for selected patient. Ventilation starts after touching **Accept**. This option is only to be used in emergency cases, where the appropriate expiratory valve for the patient group is not available and mechanical ventilation must be delivered.
- By selecting **Decline**, the dialog box closes and you remain in standby. The selection you make (Accept or Decline) is recorded with the alarm in the Events log.

[^1]: Applies only to devices with serial number > 6000.
Responding to alarms
10.1 Overview

Before proceeding, review the safety information in Chapter 1.

10.2 Accessing settings during ventilation

You can change patient data and ventilation control settings during ventilation, as needed.

10.2.1 Accessing patient data during ventilation

NOTICE

Changing the patient height (Adult/Ped.) or weight (Neonatal) automatically adjusts the following settings based on the recalculated IBW or updated Weight:

- Apnea backup setting (when set to Automatic)
- Safety ventilation startup values

Other settings and alarm limits are not adjusted.

During ventilation, the Controls > Patient window displays the basic patient profile, including sex, height, and ventilation time (Section 5.2).

When the ventilator is in Standby, the patient controls are accessible in the Standby window.

Note that if you are ventilating using the Last patient setup, these controls are greyed out and unavailable.

To change patient data during ventilation

- Open the Controls > Patient window by doing either of the following (see Figure 10-1):
 - Touch the Patient icon at the top left of the display, next to the mode name.
 - Touch Controls, then touch the Patient button, and adjust settings as needed.

Figure 10-1. Controls > Patient window (Adult/Ped shown)
10.2.2 Accessing settings during ventilation

At any time during ventilation, you can adjust settings, as needed. Changes are applied immediately.

- Touch any MMP, the SpO2 parameter under the MMPs, or Alarms to access the alarm limit controls.
- Touch Controls to access the mode controls. Some controls are also available on the right side of the main display.
- Touch the mode name at the top left of the display (Figure 5-1) or the Modes button to change the selected ventilation mode. The mode changes at the end of the current breath cycle.

Note that you can only select the nCPAP and nCPAP-PC modes when in Standby.

- Touch the Patient icon or touch Controls > Patient to access patient settings.
- Touch the Humidifier icon to access the Humidifier window.
- Touch the Connectivity icon to access the Connectivity window.

The ventilator also provides access to key functions.

Keys on the front of the ventilator provide access to important functions, including entering Standby mode and pausing the audible alarm.

When a selected function is active, the indicator light next to the key is lit.

84 Applies only to devices with serial number > 6000.
10.3 Entering/exiting Standby

WARNING

When in Standby, the ventilator does not automatically resume ventilation when the patient is reconnected. You must manually restart ventilation.

NOTICE

- Patient alarms are suppressed in Standby.
- Acoustic patient alarms are suppressed for 1 minute after starting ventilation from Standby.

Standby is a waiting mode that lets you maintain ventilator settings while the ventilator is not performing any ventilatory functions.

To stop ventilation and place the ventilator in Standby

1. Press and quickly release (Power/Standby) while the ventilator is turned on (Figure 10-2).

 The Activate Standby window opens (Figure 10-3).

2. Touch **Activate standby**.

 The Standby window opens (Figure 10-4).

While in Standby, the window shows the elapsed time the ventilator has been in Standby.

Note that, if another window is open on the display, the elapsed time appears in a small yellow box on the left side of the Standby window.

To end Standby and start ventilation

- Do either of the following:
 - Touch **Start ventilation**.
 - Press and quickly release (Power/Standby).

Ventilation resumes with the previous settings.

\(^{85}\) When HiFlowO2 is selected: Start therapy; when CPR ventilation is on: Start CPR.
10.4 Oxygen enrichment

NOTICE
- Oxygen alarms are suppressed while O2 enrichment is active.
- O2 enrichment is not available when using low-pressure oxygen.
- The Disconnection on patient side alarm is suppressed while O2 enrichment is active.

Oxygen enrichment is useful before or after tracheal/endotracheal suctioning or for other clinical applications.

The device delivers the following oxygen concentration for 2 minutes depending on the selected patient group:

- **Adult/Ped.** 100% oxygen
- **Neonatal.** 125% of the current Oxygen setting

To start oxygen enrichment

- Press \(\uparrow \text{O2} \) (O2 enrichment) (Figure 10-2).

 After a short time, the ventilator starts delivering increased oxygen (see above).

When active, the indicator light next to the key is green. The Oxygen control turns green and displays the currently applied concentration, with a countdown timer.

When finished, the ventilator resets the concentration to the previous operator-set value.

To stop O2 enrichment manually

- Do either of the following:
 - Press \(\uparrow \text{O2} \).
 Ventilation resumes at the previous operator-set oxygen concentration.
 - Change the O2 concentration using the Oxygen control.
 Ventilation resumes at the set oxygen concentration.

10.4.1 Performing an open-suctioning maneuver

CAUTION

Air leaks may compromise the ventilator’s ability to detect a reconnection of the patient after the open-suctioning maneuver, resulting in no ventilation being delivered for the remaining suctioning period (up to 60 seconds). In such cases, stop the maneuver manually, as described in the following procedure.

NOTICE

- The Suctioning tool is only available if the option is enabled on your device.
- Suctioning may affect measured values.

The Suctioning tool is intended to protect the operator from possible contamination, as well as ensure the patient’s safety during an open-suctioning maneuver. The Suctioning tool stops ventilation when a patient disconnection is detected by the ventilator.
Suctioning is disabled when using:
- HiFlowO2
- NIV or NIV-ST modes
- LPO
- During neonatal ventilation

To perform an open suctioning maneuver

1. Press (O2 enrichment) for pre-oxygenation.
2. Disconnect the patient.
 The text Suctioning maneuver is displayed in the message bar.
 Disconnecting the patient stops ventilation so that no gases are blown through the breathing circuit. All alarms are suppressed for one minute.
3. Use a suctioning catheter (not included) to suction all secretions out of the patient’s airway.
4. Reconnect the patient to the ventilator.
 Ventilation resumes, post-oxygenation starts, and all acoustic alarms are again suppressed for one minute. Alarm messages and the alarm lamp are still active.

To stop the maneuver manually

- Press (O2 enrichment) again.

10.4.2 About closed-suctioning maneuvers

NOTICE
- When performing a closed-suctioning maneuver, follow your institution’s protocols.
- Ensure O2 enrichment is not active when performing the closed-suctioning maneuver.

Verify alarm limit settings and consider whether O2 enrichment should be used prior to performing a closed-suctioning maneuver.

If the Suctioning tool is enabled on your device, ensure O2 enrichment is not active when performing the closed-suctioning maneuver.

When performing a closed-suctioning maneuver, ventilation continues and the current settings do not need to be adjusted.

You can perform a closed-suctioning maneuver with the following pressure-controlled ventilation modes: APVcmv, APVsimmv, PCV+, PSIMV+, DuoPAP, APRV, SPONT, or ASV.
10.5 High flow oxygen therapy

WARNING

- Excessive high flows through the nasal cannula could lead to adverse clinical events such as barotrauma or pneumothorax.
- Do not use high flow oxygen therapy during intrahospital transport.
- HiFlowO2 is not available when using low-pressure oxygen (LPO).

NOTICE

Be sure to use the appropriate cannula size for the patient. For details, see the cannula *Instructions for use*.

High flow oxygen therapy (HiFlowO2) continuously delivers an air/gas mixture to the patient and monitors the delivered oxygen concentration.

HiFlowO2 is indicated for adult, pediatric, infant, and neonatal patients who can breathe spontaneously. HiFlowO2 is not intended to be life-supporting.

The operator sets the oxygen concentration and flow rate. The set flow can vary from 2 to 60 l/min for adult and pediatric patients, and 2 to 15 l/min for neonatal patients.

When using HiFlowO2, the following parameters are monitored: Oxygen and Flow (in trend and as an MMP), as well as SpO2, if enabled. If a flow sensor is connected, Pprox is monitored.

Pressure is measured at the ventilator’s pressure release valve. If pressure exceeds the high pressure limit of 50 cmH2O, the flow stops and the Check for blockage alarm is generated. Flow resumes shortly after the pressure is released.

Note that during HiFlowO2, disconnection and apnea alarms are inactive.

10.5.1 Working with high flow oxygen therapy

You must be in Standby to select HiFlowO2.

To deliver HiFlowO2

1. Place the ventilator into Standby.
2. Touch Modes.
3. Touch HiFlowO2, then touch Confirm.
 - The Controls window opens. Be sure to read the safety information.
4. Set the desired values for Oxygen and Flow, then touch Confirm.
 - You can change these settings anytime.
5. Touch Start therapy.

The HiFlowO2 Trend graphs and plethysmogram (if SpO2 is enabled) are displayed.

10.6 Manual breath

You can prolong inspiration as well as deliver a manually triggered breath.

When active, the indicator light next to the Manual breath key is green.

Note that manual breath is disabled during HiFlowO2.

To deliver a manual breath

- Press and release (Manual breath) during exhalation (Figure 10-2).
The manual breath uses the mandatory breath settings (standard or operator set).

If you try to initiate a manual breath during the early stage of inspiration or the early stage of exhalation, the breath will not be delivered.

To deliver a prolonged inspiration

- Press and hold (Manual breath) during any breath phase.

If the ventilator is in exhalation, the device applies a minimum exhalation phase and then switches to inspiration. The device maintains the inspiration pressure until you release the key, or for a maximum of 15 seconds.

10.7 Working with a nebulizer

The ventilator supports the use of Aerogen and pneumatic nebulizers for adult and pediatric patients.\(^{86}\)

For neonatal patients, use an Aerogen nebulizer system.\(^{87}\)

For connection, positioning, and use details, see the *Nebulizer Positioning Guidelines* (ELO2020-124-TW) available on MyHamilton, as well as the manufacturer’s *Instructions for use*.

10.7.1 Working with a pneumatic nebulizer

Before proceeding, review the safety information in Chapter 1.

Nebulization with a pneumatic nebulizer is available in most ventilation modes (not available in SIMV/(S)CMV) except during neonatal ventilation or when using HiFlowO2.

You can use a standard inline nebulizer for delivery of prescribed medications in the ventilator circuit. The ventilator provides a stable pressure source to power a pneumatic nebulizer connected to the Nebulizer port, optimally specified for a flow of approximately 8 l/min.

The ventilator automatically compensates the additional volume provided by the pneumatic nebulizer to deliver the set tidal volume.

For effective nebulization, use a pneumatic nebulizer jar.

For additional information about nebulizer use, including adding medication, refer to the manufacturer’s *Instructions for use*. For connection and setup details, see Section 4.6.

To start and stop nebulization

1. Press (Nebulizer) (Figure 10-2).
 - When active, the indicator light next to the key is green.
 - The fixed nebulizer flow, using 100% O2, is synchronized with the inspiratory phase of each breath for 30 minutes.

2. To stop nebulization at any time, press again.

\(^{86}\) See the Hamilton Medical e-catalog for compatible devices.

\(^{87}\) Aerogen nebulization is not supported for patients younger than 28 days old in the USA.
10.8 Working with a speaking valve

Speaking valve compatibility is an option available for Adult/Ped invasive ventilation when using any of the following modes: PCV+, PSIMV+, and SPONT.

For details about connecting a speaking valve, as well as activating the use of a speaking valve with the ventilator, see Section 4.7.

10.8.1 Mode changes that automatically turn off compatibility

The following actions automatically deactivate speaking valve compatibility:

- Entering Standby.
 You must manually reactivate compatibility when restarting ventilation, if desired.
- Selecting a mode that does not support use of a speaking valve.
- Entering CPR mode, Safety ventilation or Ambient mode.

Note that upon automatic deactivation, the message SpeakValve OFF appears in the ventilator message bar. See Table 10-1.

10.8.2 Speaking valve-related control settings

In PSIMV+ and SPONT modes, the control setting Ti max is available in the Controls > More window when speaking valve compatibility is activated (ON).

When speaking valve compatibility is deactivated (OFF), Ti max is unavailable in these modes unless configured otherwise (Section 13.4.4).

When a speaking valve is connected to a patient, remove the speaking valve before activating CPR ventilation.

Speakvalve is not accessible during CPR.

10.8.3 Parameters monitored when compatibility is activated

When speaking valve compatibility is activated, the following parameter changes are in effect:

- The following monitoring parameters are invalid and show dashes (---):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoPEEP</td>
<td>PTP</td>
</tr>
<tr>
<td>Cstat</td>
<td>RCexp</td>
</tr>
<tr>
<td>Exp Flow</td>
<td>Rinsp</td>
</tr>
<tr>
<td>ExpMinVol</td>
<td>VLeak</td>
</tr>
<tr>
<td>MVLeak</td>
<td>VTE</td>
</tr>
<tr>
<td>P0.1</td>
<td>VTESpont</td>
</tr>
<tr>
<td>Pmean</td>
<td>Vt/IBW</td>
</tr>
<tr>
<td>Pplateau</td>
<td></td>
</tr>
</tbody>
</table>

Except in Safety ventilation or Ambient mode.
• If VTE is set as a main monitoring parameter (MMP), VTI is displayed instead. If both VTI and VTE are selected as MMPs, upon activation, the VTE value shows dashes (---).

• Apnea backup ventilation is disabled.

Once compatibility is deactivated, Apnea backup ventilation returns to its previous setting, and the parameters listed above, including VTE, are again actively monitored.

10.8.4 Speaking valve-related alarms

The alarms listed in the table below are related to speaking valve compatibility. For help resolving alarm situations, see Table 9-2.

Table 10-1. Speaking valve-related alarm conditions

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpeakValve ON</td>
<td>Always displayed as long as compatibility is activated.</td>
</tr>
<tr>
<td>SpeakValve ON Low priority</td>
<td></td>
</tr>
<tr>
<td>Vt low High priority when speaking valve compatibility (SpeakValve) is activated</td>
<td>When SpeakValve is ON, this alarm is based on delivered volume instead of exhaled volume. VTI was below the limit for 2 consecutive breaths. This alarm can indicate that the cuff is still inflated! Be sure to also carefully check the alarm and ventilator settings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExpMinVol low</td>
<td>Automatically set to OFF.</td>
</tr>
<tr>
<td>ExpMinVol high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnection on patient side</td>
<td></td>
</tr>
<tr>
<td>Disconnection on ventilator side</td>
<td>Suppressed. If the lower Pressure limit is appropriately set, when a disconnection occurs, a Low pressure alarm is generated.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiratory volume limitation</td>
<td>Suppressed.</td>
</tr>
</tbody>
</table>

SpeakValve OFF (after being enabled)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume related, including low and high ExpMinVol limits</td>
<td>Upon deactivation, all volume-related alarm limits are reset based on the patient’s IBW.</td>
</tr>
<tr>
<td>SpeakValve OFF Low priority</td>
<td>Displayed when compatibility has been automatically deactivated. Confirm the change in status by pressing the Audio pause key.</td>
</tr>
</tbody>
</table>
10.9 CPR ventilation

The HAMILTON-C1 uses CPR ventilation to continue respiration during the administra-
tion of cardiopulmonary resuscitation. When activated, CPR ventilation adjusts the ventilator to:

- Use either APVcmv or PCV+ ventilation mode
- Display relevant MMPs, waveforms, and a CPR duration timer
- Modify the alarm limits while CPR ventilation is in use (see Table 10-4)

CPR ventilation is indicated for adult, pediatric, and neonatal patients.

CPR ventilation is available during all ventilation modes except nCPAP, nCPAP-PC, and when using HiFlowO2 therapy.

Table 10-2 provides an overview of working with CPR.

Table 10-2. CPR ventilation overview

<table>
<thead>
<tr>
<th>For details about ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a default mode</td>
<td>Section 13.8</td>
</tr>
<tr>
<td>Starting and stopping CPR ventilation</td>
<td>Section 10.9.2</td>
</tr>
<tr>
<td>Working with CPR ventilation</td>
<td>Section 10.9.2</td>
</tr>
<tr>
<td>CPR-related control settings</td>
<td>Section 10.9.1</td>
</tr>
<tr>
<td>Monitoring and display when CPR ventilation is on</td>
<td>Section 10.9.3</td>
</tr>
<tr>
<td>CPR-related alarms</td>
<td>Section 10.9.4</td>
</tr>
</tbody>
</table>

10.9.1 About the CPR modes and settings

The ventilator uses one of two modes during CPR ventilation:

- APVcmv (default mode)
- PCV+

You can change the default ventilation mode to use. For details, see Section 13.8.

The mode control settings are described in Table 10-3.
10.9.2 Working with CPR ventilation

When you start CPR ventilation, the ventilator switches to the configured mode and settings. You can start CPR at any time, from Standby or during active ventilation.

Note the following when CPR ventilation is on:

- **Flow trigger** is unavailable and set to OFF.
- **P-ramp** is unavailable and set to 50 ms.
- In APVcmv mode, you set the Vt/IBW in **Configuration**. This defines the initial start-up setting for the tidal volume (Vt) control.
- For neonatal patients, **Apnea time** is set to 10 seconds.
- The alarm limits for ExpMinVol, fTotal, VT, and PetCO2 are set to their maximum and minimum settings.
- The SpO2 and Pulse alarm limits are set to OFF, if applicable.
- The Speaking valve compatibility is deactivated.
- The low-priority CPR ON alarm is active.
- HAMILTON-H900 humidification switches to Invasive mode.

To start CPR ventilation

1. Touch **Modes**.
2. In the **Modes** window, touch **CPR**.
 - The Controls > Basic window opens.
3. Review and, if needed, adjust the control settings, then touch **Confirm** to start CPR ventilation.

The mode changes to the default CPR mode set on the ventilator, and the CPR ON alarm is generated. Ventilation starts or continues.

To stop CPR ventilation and enter Standby

1. Press the **Power/Standby** button.
2. In the confirmation window, touch **Activate standby**.

CPR ventilation stops and the device enters Standby.

To restart CPR ventilation, touch **Start CPR**.

To stop CPR ventilation and continue ventilating the patient

1. Touch **Modes**.
2. Select and confirm a ventilation mode.

The ventilator starts ventilation in the selected mode using the previously defined settings.

CPR ventilation events and elapsed CPR ventilation time are recorded in the Event log.
10.9.3 Monitoring and display during CPR

When CPR ventilation is on, the following MMPs are displayed: Ppeak, VTE, fTotal, and the CPR Timer.

In addition to the MMPs, the Paw, PCO₂, and Flow waveforms are displayed. See Figure 10-5.

10.9.4 CPR-related alarms

The following alarms are related to CPR ventilation. For help resolving alarm situations, see Table 9-2.

Stopping CPR ventilation or changing the ventilation mode resets the alarms to the previous settings.

Table 10-4. CPR ventilation-related alarm conditions

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR ON</td>
<td>Always displayed as long as CPR ventilation is on.</td>
</tr>
<tr>
<td>Pressure high</td>
<td>As already configured (Plimit + 10 cmH₂O).</td>
</tr>
<tr>
<td>ExpMinVol low/</td>
<td>The alarm limits are automatically set to the minimum and maximum</td>
</tr>
<tr>
<td>high</td>
<td>settings.</td>
</tr>
<tr>
<td>fTotal low/high</td>
<td></td>
</tr>
<tr>
<td>PetCO₂ low/high</td>
<td></td>
</tr>
<tr>
<td>Pulse low/high</td>
<td></td>
</tr>
<tr>
<td>SpO₂ low/high</td>
<td></td>
</tr>
<tr>
<td>Vt low/high</td>
<td></td>
</tr>
</tbody>
</table>

10.10 Locking and unlocking the touch screen

You can lock the touch screen to prevent inadvertent entries.

When screen lock is active:

- The indicator light next to the key is lit green.
- Touching the screen generates an audible beep and the message, Screen is locked!, is displayed.
- Some device controls remain available, while others are disabled, as follows:
 - **Active controls.** Audio pause, Manual breath, O₂ enrichment, Nebulizer, Day/Night
 - **Inactive controls.** Touch screen, Power/Standby, Print screen, P&T knob

To lock or unlock the screen

- Press (Screen lock/unlock) (Figure 10-2).

89 Only available if the CO₂ communication board is installed and the CO₂ sensor is enabled.
90 If the option is installed and activated.
91 Applies only to devices with serial number > 6000.
10.11 Capturing a screenshot

Before using a USB drive with the ventilator, review the safety information in Section 1.4.4.

The (Print screen) key saves a JPG file of the current ventilator display. You can save the screenshot to a USB drive or to internal ventilator memory.

To capture a screenshot of the display
1. If the potential equalization USB cable is in use, remove it from the USB port.
2. Press (Figure 10-2) when the desired display is shown.
 – If a USB drive is in the ventilator USB port, the device saves the image to the screenshots folder on the USB drive.
 – If no USB drive is inserted, the device saves the image to the ventilator memory. You can later download the image using the Hamilton Connect App.
3. Reinsert the potential equalization USB cable into the USB port, if needed. CO2 sensor readings resume within 20 seconds.

The filename uses the following format:
screenshot_C1-sn_yyyy-mm-dd_hh-mm-ss.jpg
where:
- C1 is the device name
- sn is the device serial number
- yyyy is the year
- mm is the month
- dd is the date
- hh is the hour (in 24-hour format)
- mm is the minute
- ss is the second

10.12 Setting display options

You can set the day and night display brightness, as well as the device date and time.

10.12.1 Setting date and time

You set the date and time for the ventilator in the System > Settings window. Ensure the date and time are set correctly so that event log entries have accurate time and date stamps.

To set the date and time
1. Do either of the following:
 – Touch the Date/Time indicator at the top of the display (Table 2-3).
 – Touch System > Settings > Date & Time (Figure 10-6).
2. Adjust the date and time, then touch Apply to save the changes.

For details, see the Hamilton Connect App Instructions for use.
10.12.2 Day and night display brightness

Use these settings to set the brightness of the display for use during the day and night.

To set the display brightness

1. Touch **System > Settings** (Figure 10-7).
2. Touch **Day & Night**.
3. To select **Day** mode with a bright display, touch the **Day** button. To select **Night** mode with a dimmer display, touch the **Night** button.
4. Adjust the brightness of the display in each mode using the **Brightness** control. The setting you choose becomes the new default for that mode.
5. To have the device control the brightness based on ambient light, touch the **Automatic** button.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Brightness range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>10% to 100%</td>
<td>80%</td>
</tr>
<tr>
<td>Night</td>
<td>10% to 100%</td>
<td>40%</td>
</tr>
</tbody>
</table>

The **（Day/Night）** key\(^\text{93}\) allows you to quickly switch the display between defined **Day** and **Night** settings. When the **Night** setting is active, the green indicator light next to the key is lit.

To change the display brightness to the defined **Day** or **Night** setting

- Press **（Day/Night）** (Figure 10-2).

\(^{93}\) Applies only to devices with serial number > 6000.
10.13 About the Event log

Once the ventilator is turned on, event logs collect data about clinically relevant ventilator activities, including alarms, technical notes, setting changes, calibrations, maneuvers, and special functions.

The date, time, and a unique identification reference (ID) for event classification is included.

Alarms are shown in color, depending on priority level (yellow for low or medium, red for high).

A more extensive log including technical and configuration details is available to service engineers.

When setting up a new patient:

- Data is appended to the existing event log when you select the Last patient tab.
- The event log is cleared and starts again when you select a different patient group tab (Adult/Ped or Neonatal).

Event log data persists after shutting off the ventilator or in the event of a power loss. A maximum of 10,000 events is stored. When a log buffer is full, new events overwrite the oldest log entries.

You can copy event log data. See Section 10.13.1.
10.13.1 Copying event log data

Before using a USB drive with the ventilator, review the safety information in Section 1.4.4.

You can copy event and service logs to a USB drive or download them to your smartphone using the Hamilton Connect App.

The USB drive must have a FAT or FAT32 format and it must not have an operating system or a security system installed.

To copy the log files
1. Place the ventilator into Standby and insert a USB drive into the USB port (Figure 2-5).
2. Touch Tools > Utilities (Figure 10-9).
3. Touch Export Logs.
4. Remove the USB drive when the text Export successful is displayed.

The log files are saved to the folder named C1-sn<serial number> on the USB drive.

94 For details, see the Hamilton Connect App Instructions for use.
Ventilation settings and functions
11 Working with external devices

11.1 Working with the HAMILTON-H900 humidifier ..228
11.2 Working with smartphones and clinical networks.................................238
11.1 Working with the HAMILTON-H900 humidifier

Before proceeding, review the safety information in Chapter 1.

Using the HAMILTON-H900 humidifier with the ventilator offers remote access to humidifier controls and status directly from the ventilator display. In addition, functions between the devices are synchronized.

You can control some humidifier functions from the ventilator or on the humidifier itself.

This section describes using the ventilator to manage and monitor humidifier settings.

For detailed information about the settings, specifications, patient set up, humidifier operation, humidifier configuration, and important safety information, see the HAMILTON-H900 Instructions for use.

<table>
<thead>
<tr>
<th>Table 11-1. Operation overview</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>For details about ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing humidifier controls on the ventilator</td>
<td>Section 11.1.1</td>
</tr>
<tr>
<td>Humidification modes</td>
<td>Section 11.1.2</td>
</tr>
<tr>
<td>Changing humidity using temperature controls</td>
<td>Section 11.1.3</td>
</tr>
<tr>
<td>Entering Standby</td>
<td>Section 11.1.4</td>
</tr>
<tr>
<td>Turning the humidifier on/off</td>
<td>Section 11.1.5</td>
</tr>
<tr>
<td>Humidifier-related alarms</td>
<td>Section 11.1.6</td>
</tr>
<tr>
<td>Humidifier-related parameters</td>
<td>Section 11.1.7</td>
</tr>
</tbody>
</table>

11.1.1 Accessing humidifier controls on the ventilator

The Humidifier window shows the water chamber exit temperature ($T_{\text{humidifier}}$) and the humidifier Y-piece temperature ($T_{\text{Y-piece}}$). It also provides access to the operations listed in Table 11-1.

To open the Humidifier window

- Do either of the following (Figure 11-1):
 - Touch 🛒 (Humidifier).
 - Touch System > Settings > Humidifier.

If communication between the humidifier and the ventilator is lost, the window is disabled.
Figure 11-1. System > Settings > Humidifier window

1. Humidifier icon
2. System
3. Settings
4. Humidifier
5. Off, Auto, Manual
6. Currently active humidification mode (Invasive, NIV, HiFlow)
7. Set temp control
8. T gradient control
9. T humidifier
10. T Y-piece
11 Working with external devices

11.1.1.1 About the Humidifier button

The (Humidifier button) at the bottom right of the display provides quick access to the Humidifier window and indicates the state of the humidifier, including whether any alarms are active.

Table 11-2. Humidifier button icon states

<table>
<thead>
<tr>
<th>Icon state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grayed out. Humidifier is not connected.</td>
</tr>
<tr>
<td></td>
<td>If no icon is displayed, this option is not available in your country.</td>
</tr>
<tr>
<td>Outline only</td>
<td>Outline only. Humidifier is connected but turned off.</td>
</tr>
<tr>
<td>Full, white</td>
<td>Full, white. Humidifier is connected and turned on.</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow. Humidifier is connected and a low- or medium-priority humidifier alarm is active.</td>
</tr>
<tr>
<td>Red</td>
<td>Red. Humidifier is connected and a high-priority humidifier alarm is active.</td>
</tr>
</tbody>
</table>

11.1.1.2 Verifying connection status

When communication is established between the humidifier and the ventilator, the active connection status is displayed on both devices: the Humidifier icon on the ventilator display (Table 11-2), and the (Connection to ventilator) symbol on the humidifier become active.

Note that the connection status icon on the humidifier is not displayed when in Standby.

11.1.2 About the humidification modes

The humidifier offers three humidification modes: Invasive, NIV, and HiFlow.

The set mode determines the initial temperature settings at the water chamber exit and at the Y-piece, as well as the allowed temperature ranges for these settings. The control settings are described in Table 11-3.

The Invasive mode allows for a higher temperature range than the NIV mode. For details about the humidifier settings and ranges, see the HAMILTON-H900 Instructions for use.

The currently set humidification mode is shown in the System > Settings > Humidifier window.

Figure 11-2 shows the Invasive mode selected; Figure 11-3 shows the NIV mode selected.

When connected to the ventilator, the humidifier automatically matches the humidification mode to the type of ventilation mode selected on the ventilator. For example, when the mode on the ventilator is invasive, such as ASV, the humidifier is automatically set to Invasive mode.

95 On the ventilator display, the text HiFlowO2 is shown, but on the HAMILTON-H900 humidifier, HiFlow is shown.

96 Supported for HAMILTON-H900 version 1.10x and later. If using an older version of humidifier, when treating the patient using HiFlowO2 therapy, the humidifier uses the same temperature and humidity specifications as the humidifier’s Invasive mode.
Depending on the selected humidification mode, you can set controls automatically or manually:

- The humidifier supports invasive and noninvasive ventilation modes, as well as high flow oxygen therapy, for which you can use either automatic (Auto) or manual settings.

- Any time the humidifier changes from one mode to another, it also automatically switches to Auto settings and loads the configured default settings for the newly selected humidification mode.

For details about Auto and Manual control settings, see Section 11.1.2.1.

Further, the humidifier matches the operating status of the ventilator. If ventilation is active, the humidifier is running. If the ventilator is in Standby, the humidifier automatically enters Standby.

Note that if the humidifier is turned off and the ventilator is still on, starting ventilation will not automatically start the humidifier. The humidifier must be turned on manually. See Section 11.1.5.

11.1.2.1 Auto and Manual control settings

The water chamber exit temperature and temperature gradient are set using either of the following methods:

- Loaded from the configured default settings on the humidifier (Auto mode)

- Set manually by the operator (Manual mode)

When set to Auto, the temperature controls in the System > Settings > Humidifier window are disabled. You must first enable Manual mode to change any settings.

In both cases, the humidifier automatically controls the temperatures to reach the specified settings.

Automatic settings (Auto)

When set to Auto, the humidifier loads the associated default settings specified for the selected humidifier mode in its configuration and uses them to control the gas temperature.

In Auto mode, the temperature controls in the ventilator System > Settings > Humidifier window are grayed out (disabled), but they display the configured Auto settings (Figure 11-2).

For details about these settings, see the HAMILTON-H900 Instructions for use.

Figure 11-2. Auto mode

![Diagram showing Auto mode settings](image-url)
Manual settings

When set to Manual, you set controls as follows:

- **Invasive, NIV**: Set temp, T gradient
- **HiFlow**: Set temp

Table 11-3 describes these controls.

The temperature controls in the ventilator System > Settings > Humidifier window are enabled (Figure 11-3).

You can change settings both in the Humidifier window as well as directly on the humidifier. When you change values on the humidifier, the values are also reflected on the controls on the ventilator.

Figure 11-3. Manual mode

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set temp</td>
<td>Temperature at the water chamber exit. The possible range of values for this control depends on the selected humidifier operating mode: Invasive, noninvasive (NIV), or HiFlow. Higher values result in higher absolute humidity.</td>
</tr>
<tr>
<td>T gradient</td>
<td>The difference between the temperature at the water chamber exit and at the Y-piece. A higher value decreases condensation. Can only be changed in Invasive and NIV modes.</td>
</tr>
</tbody>
</table>

In a way, the **Set temp** and **T gradient** parameters are linked. The maximum allowed temperature at the patient (Y-piece) is 42°C. The combination of the values set for these two parameters cannot exceed this limit.
For example, if \(T\) gradient is set to 2°C, the highest possible setting for \(\text{Set temp} \) in the Invasive mode is 40°C.

Note, however, that the \(T\) gradient setting takes precedence over the \(\text{Set temp} \) value. For example, if \(\text{Set temp} \) is set to 40°C, you can set \(\text{T gradient} \) to 3°C even though the combination exceeds 42°C. Once the \(\text{T gradient} \) setting is accepted, the \(\text{Set temp} \) value automatically resets to 39°C.

To manually specify humidifier settings

- Do either of the following:
 - In the System > Settings > Humidifier window on the ventilator, touch the Manual button, then select the desired \(\text{Set temp} \) and \(\text{T gradient} \) values.
 - Change the chamber exit temperature or temperature gradient directly on the humidifier.

The changes are applied immediately.

For details about working directly on the humidifier, see the HAMILTON-H900 Instructions for use.

11.1.4 Entering Standby

The humidifier automatically enters Standby mode when the ventilator enters Standby.

11.1.5 Turning the humidifier on/off

You can turn the humidifier on or off both from the ventilator and from the device itself.

When you connect the humidifier to the ventilator, the humidifier assumes the same state as the ventilator.

That is, if the ventilator is in Standby, the humidifier is as well. If the ventilator is in active ventilation, the humidifier starts operation immediately.

To turn off the humidifier from the ventilator

- In the System > Settings > Humidifier window, touch the Off button (Figure 11-1).

The Off button turns green and all of the controls in the window are disabled.

The Auto and Manual buttons remain available.

To turn the humidifier back on from the ventilator

1. In the System > Settings > Humidifier window, touch the Manual or Auto button to turn on the humidifier (Figure 11-1).
2. Check the settings and adjust, if needed.

When you start ventilation, the humidifier starts automatically.

If the humidifier is turned off and you start ventilation, it will not automatically turn on.
11.1.6 About humidifier-related alarms

Alarms on the HAMILTON-H900 are displayed on the ventilator immediately. Humidifier-related alarm messages are indicated in the following locations:

- On the humidifier, graphically
- Alarm message on the ventilator main display
- The **Humidifier** icon changes color (Table 11-2)

The alarms listed here may not be comprehensive. Be sure to review the HAMILTON-H900 Instructions for use for details and troubleshooting information.

Figure 11-4. Humidifier-related alarm indicators on ventilator (showing medium-priority alarm)

To pause the audible humidifier alarm

- Touch (Audio pause) on either the ventilator or the humidifier. Note that touching the Audio pause key on the ventilator also temporarily silences the alarm on the humidifier.

Table 11-4 lists the humidifier-related alarms shown on the ventilator and the associated icon on the humidifier.
Table 11-4. Humidifier alarms

<table>
<thead>
<tr>
<th>Alarm text on ventilator</th>
<th>Alarm icon on HAMILTON-H900</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High priority</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Humidifier tilt | ![Humidifier tilt icon] | - Humidifier is at a dangerous angle of incline.
- The humidifier is at a 10° angle or higher relative to the floor. |
| Humidifier chamber temp high | ![Humidifier temp high icon] | The gas temperature at the water chamber exit or at the Y-piece is above the set value. |
| Humidifier Y-piece temp high | ![Humidifier temp high icon] | The gas temperature at the water chamber exit or at the Y-piece is above the set value. |
| Humidifier water high | ![Humidifier water icon] | The water level in the water chamber is above the maximum level mark. |
| Humidifier error | n/a | - Check humidifier operation and all connections.
- Replace the humidifier and have it serviced.
- If a technical fault number is displayed, make a note of it and provide it when the humidifier is serviced. |
| Check humidifier | n/a | - When the alarm is related to something other than the humidifier alarms listed in this table, the ventilator displays this text.
- Check humidifier operation and all connections. |
| **Medium priority** | | |
| Humidifier chamber temp low | ![Humidifier temp low icon] | - Temperature too low.
- The gas temperature at the water chamber exit or at the Y-piece is below the set value.
- Avoid direct air flow from air conditioning and the like to the humidifier and breathing circuit. |

For detailed information about each alarm and actions to resolve each one, see the HAMILTON-H900 Humidifier Instructions for Use.
Alarm text on ventilator

<table>
<thead>
<tr>
<th>Alarm icon on HAMILTON-H900</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidifier water low</td>
<td>The water level in the chamber is low.</td>
</tr>
<tr>
<td>Humidifier check chamber</td>
<td>No chamber or incompatible water chamber inserted.</td>
</tr>
<tr>
<td>Check breathing circuit limbs</td>
<td>The display and connection indicators show which limb is faulty.</td>
</tr>
<tr>
<td>Humidifier check left tube</td>
<td>• No limb or defective limb connected.</td>
</tr>
<tr>
<td>Humidifier check right tube</td>
<td>• No air flow.</td>
</tr>
<tr>
<td></td>
<td>• A limb is not properly connected.</td>
</tr>
<tr>
<td></td>
<td>• The WHITE humidifier expiratory limb is connected to the ventilator To patient inspiratory port.</td>
</tr>
</tbody>
</table>

Low priority

<table>
<thead>
<tr>
<th>The Connection to ventilator symbol (照亮)</th>
<th>Note that the humidifier information in the ventilator System > Info > Info 2 window is absent, and the Humidifier button is grayed out.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displayed on the ventilator only</td>
<td>• There is a problem with the connection between the humidifier and the ventilator.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that the humidifier communication cable is securely connected to the humidifier and to the HAMILTON-H900 COM1 port on the ventilator communication board.</td>
</tr>
<tr>
<td></td>
<td>• Open the alarm buffer by touching the message bar or the i-icon, if displayed, to reset the alarm.</td>
</tr>
</tbody>
</table>
11.1.7 About humidifier-related parameters

Humidifier data is displayed in the following locations:
- System > Settings > Humidifier window
- As an MMP (if configured)
- System > Info > Info 2 window

The following parameters are related to humidifier operation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAMILTON-H900</td>
<td>Indicates the humidifier is connected, and shows the current software version. Displayed in the System > Info > Info 2 window.</td>
</tr>
<tr>
<td>Set temp</td>
<td>Control parameter. See Table 11-3.</td>
</tr>
<tr>
<td>T humidifier</td>
<td>Monitored parameter. Measured temperature at the water chamber exit. Displayed in System > Settings > Humidifier window. In Configuration, this parameter can be set as an MMP. Displayed as an MMP during HiFlowO2 therapy.</td>
</tr>
<tr>
<td>T gradient</td>
<td>Control parameter. See Table 11-3.</td>
</tr>
<tr>
<td>T Y-piece</td>
<td>Monitored parameter. Measured temperature at the Y-piece. Displayed in System > Settings > Humidifier window. In Configuration, this parameter can be set as an MMP.</td>
</tr>
</tbody>
</table>
11.2 Working with smartphones and clinical networks

The HAMILTON-C1 can connect to external devices using wired and wireless connection types\(^97\). When used with the Hamilton Connect App\(^98\), you can connect to a ventilator equipped with the Hamilton Connect Module, and view information from the ventilator on your smartphone.

Preparing the ventilator for connectivity comprises the following steps:

- Configuring ventilator connectivity for use in your institution, performed by technical personnel (see Table 11-6)
- For medical caregivers, selecting the connection type, then pairing a smartphone to the ventilator (see Table 11-7)

For more information about the Hamilton Connect App, see the *Hamilton Connect App Instructions for use*, available on MyHamilton.

Table 11-6. Connectivity tasks for technical personnel

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>These configuration tasks are performed by technical personnel.</td>
<td></td>
</tr>
<tr>
<td>Configure network and connectivity</td>
<td>See the Hamilton Connect Communication and Configuration Guide</td>
</tr>
<tr>
<td>Copy Connectivity configuration settings to the ventilator</td>
<td>Section 13.9</td>
</tr>
</tbody>
</table>

Table 11-7. Connectivity tasks for medical caregivers

<table>
<thead>
<tr>
<th>To ...</th>
<th>See ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following tasks are performed by medical personnel caring for patients.</td>
<td></td>
</tr>
<tr>
<td>One-time authentication of your Hamilton Connect App account</td>
<td>Section 11.2.1</td>
</tr>
<tr>
<td>Enable a connection type</td>
<td>Section 11.2.2</td>
</tr>
<tr>
<td>Connect using Bluetooth</td>
<td>Section 11.2.3</td>
</tr>
<tr>
<td>Connect using Wi-Fi Access Point</td>
<td>Section 11.2.4</td>
</tr>
<tr>
<td>Connect using Wireless LAN (Wi-Fi)</td>
<td>Section 11.2.5</td>
</tr>
<tr>
<td>Set up an Ethernet connection</td>
<td>Section 11.2.6</td>
</tr>
<tr>
<td>Disconnect a paired smartphone</td>
<td>Section 11.2.7</td>
</tr>
</tbody>
</table>

11.2.1 Setting up a Hamilton Connect App account

Before you can use the app, you must create a user account. For details, see the *Hamilton Connect App Instructions for Use*.

\(^{97}\) Not all connection types are available in all markets.

\(^{98}\) Available for download on supported mobile devices. For details about the App, see the *Hamilton Connect App Instructions for use*.
11.2.2 Enabling a connection type

 Depending on your institution’s network policy, you can enable one or more connection types on the ventilator. For example, you can enable Bluetooth and Wireless LAN (Wi-Fi).

 When enabled and configured, the following connection types are supported:

<table>
<thead>
<tr>
<th>Connection type</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth</td>
<td>![Bluetooth Symbol]</td>
</tr>
<tr>
<td>Wi-Fi Access Point</td>
<td>![Wi-Fi Access Point Symbol]</td>
</tr>
<tr>
<td>Wireless LAN (Wi-Fi)</td>
<td>![Wireless LAN Symbol]</td>
</tr>
<tr>
<td>Ethernet</td>
<td>![Ethernet Symbol]</td>
</tr>
</tbody>
</table>

 Note that the Wi-Fi Access Point and Wireless LAN (Wi-Fi) connection types cannot be enabled at the same time.

To enable a connection type

1. Do either of the following:
 - Touch one of the connectivity icons in the lower right of the display.
 - Touch System > Settings > Connectivity.

 The Connectivity window opens, displaying the Status tab. See Figure 11-5.

2. Select the desired connection type(s):
 - A green checkmark appears by each selected connection type.
 - The tab for the selected connection type is enabled.
 - The connection shortcut icon turns white.

Figure 11-5. System > Settings > Connectivity > Status window
11.2.3 Setting up a Bluetooth connection

The Bluetooth wireless technology connection type allows you to directly connect your smartphone to the ventilator. You do not need to be on your institution’s network.

To connect using Bluetooth

- Before proceeding, ensure that Bluetooth is enabled on your smartphone.
 1. Enable Bluetooth on the ventilator, if needed. See Section 11.2.2.
 2. In the System > Settings > Connectivity window, touch the Bluetooth tab. The Bluetooth window opens, displaying the configured name of the Bluetooth connection, PIN, and a QR code. See Figure 11-6. You can now select the ventilator on your smartphone.
 3. Follow the instructions in the Hamilton Connect App to pair and connect to the ventilator.

After your smartphone is connected:
- On the Bluetooth tab the name of the connected smartphone is displayed and the Disconnect button is enabled.
- The Status tab displays Connected.
- The connection shortcut icon turns green.

For details about disconnecting a paired smartphone, see Section 11.2.7.

Figure 11-6. Bluetooth window

1 System
2 Settings
3 Connectivity
4 Bluetooth
5 Device name, PIN, QR code
6 Connectivity icons

11.2.4 Setting up a Wi-Fi Access Point

The Wi-Fi Access Point connection type allows you to directly connect your smartphone to the ventilator. You do not need to be on your institution’s network.

To connect using a Wi-Fi Access Point

- Before proceeding, ensure that Wi-Fi is enabled on your smartphone.
 1. Enable Wi-Fi Access Point on the ventilator, if needed. See Section 11.2.2.
 2. In the System > Settings > Connectivity window, touch the Connectivity tab. The Wi-Fi Access Point window opens, displaying the configured name of the Wi-Fi Access Point, SSID, Pre-shared-key (PSK), PIN, and a QR code. See Figure 11-7.
3. Follow the instructions in the Hamilton Connect App to pair and connect to the ventilator.

For details about disconnecting a paired smartphone, see Section 11.2.7.

Figure 11-7. Wi-Fi Access Point window

To enable a Wireless LAN (Wi-Fi) connection

- Before proceeding, ensure that your smartphone is connected to a wireless (Wi-Fi) network.

1. Enable Wireless LAN on the ventilator, if needed. See Section 11.2.2.

2. In the System > Settings > Connectivity window, touch the tab.

The Wireless LAN window opens, displaying the available Access Point profiles, IP address, port number, network name, PIN, and a QR code. See Figure 11-8.

3. Select the desired network from the Selected Access Point Profile dropdown list.

4. Follow the instructions in the Hamilton Connect App to pair and connect to the ventilator.

Figure 11-8. Wireless LAN window

11.2.5 Setting up a Wireless LAN (Wi-Fi) connection

The Wireless LAN connection type allows you to connect your smartphone to the ventilator using a wireless (Wi-Fi) network.
11.2.6 Connecting to a network using Ethernet

The Ethernet connection type uses the RJ-45 Ethernet port on the ventilator and an Ethernet cable to connect the ventilator to a network. See Figure 2-3.

To connect to a network using Ethernet

1. Enable Ethernet on the ventilator, if needed. See Section 11.2.2.
2. In the System > Settings > Connectivity window, touch the Ethernet tab.
 The Ethernet window opens, displaying the Selected Ethernet Profile drop-down list, IP address, port number, network name, PIN, and a QR code. See Figure 11-9.
3. Follow the instructions in the Hamilton Connect App to pair and connect to the ventilator.

Figure 11-9. Ethernet window

11.2.7 Disconnecting a paired smartphone

You can remove a smartphone that has been connected (paired) to a ventilator. You can also disconnect a ventilator from a Wireless LAN (Wi-Fi) or Ethernet network.

To disconnect a smartphone from the ventilator

- Do any of the following:
 – Touch Disconnect in either the Bluetooth or Wi-Fi Access Point tabs.
 – Disable the desired connection type in the System > Settings > Connectivity window.
 – Disconnect using the Hamilton Connect App. For details, see the Hamilton Connect App Instructions for Use.

To disconnect the ventilator from a Wireless LAN (Wi-Fi) or Ethernet network

- Disable the desired connection type in the System > Settings > Connectivity window.
12 Maintenance

12.1 Overview...244
12.2 Cleaning, disinfection, and sterilization ...244
12.3 Preventive maintenance ...248
12.4 Performing maintenance tasks ...249
12.5 Repacking and shipping ...250
12.1 Overview

NOTICE

(USA only) Only use EPA-registered and approved surface cleaning/disinfection agents.

Before proceeding, review the safety information in Chapter 1.

This chapter provides information about ventilator maintenance procedures and schedule, as well as cleaning and disinfection instructions.

All of the procedures in this chapter are to be performed by the operator.

For additional maintenance requirements, contact your Hamilton Medical service representative. Any documents referenced in this chapter are available on the MyHamilton website: https://www.hamilton-medical.com/MyHamilton

12.2 Cleaning, disinfection, and sterilization

Ventilator components must be regularly cleaned and disinfected, using the cleaning methods and solutions specific to the individual components.

It is important that you use the appropriate method and materials when cleaning and disinfecting the ventilator and its components, not only to avoid damaging the equipment, but also to avoid cross-contamination.

Cleaning and disinfection information is presented as follows:

- Table 12-1 lists the applicable ventilator-related components, and indicates which cleaning and disinfection methods can be used for each one, the frequency with which the component must be cleaned/disinfected, and any other relevant information.

- Table 12-2 provides cleaning and disinfection information for ventilator-compatible external devices and sensors.

- Table 12-3 lists the supported cleaning and disinfection agents, as well as the concentration to be used for the ventilator.

- Table 12-4 lists the supported cleaning and disinfection agents for the CO2 sensors.

When working with the ventilator components, cleaning methods, and cleaning agents, keep the following in mind:

- Do not attempt decontamination procedures unless specified by Hamilton Medical or the original manufacturer.

- While we provide guidelines for agents and concentrations to use, if you have specific questions about the use of a particular cleaning or disinfection agent, contact the manufacturer of the agent.

- After cleaning and decontaminating parts, be sure to perform any required tests and calibrations described in Chapter 5.
Table 12-1. Ventilator cleaning and disinfection methods

<table>
<thead>
<tr>
<th>Part</th>
<th>Frequency</th>
<th>Cleaning/disinfection method</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator exterior including:</td>
<td>After each patient use or as needed.</td>
<td>Wipe with a damp cloth using a registered and approved cleaning/disinfection solution.</td>
<td>Do not clean the ventilator interior to avoid damaging internal components.</td>
</tr>
<tr>
<td>• Housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gas supply hoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mounting systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Touch screen | After each patient use or as needed. | Wipe with a damp cloth using a registered and approved cleaning/disinfection solution or a nonabrasive glass cleaner. | • Lock the touch screen before cleaning. See Section 10.10.
• Do not use any vinegar based solutions.
• Avoid using a gritty cloth. |
| Trolley-related accessories including: | After each patient use or as needed. | Wipe with a damp cloth using a registered and approved cleaning/disinfection solution. | |
| • Trolley | | | |
| • Basket | | | |
| • O2 cylinder holding system | | | |
| Autoclavable expiratory valve | After each patient use or as needed. | Clean and sterilize according to the instructions in the *Expiratory Valve Reprocessing Guide* (PN 624591). | For details about assembly, installation, and disassembly of the expiratory valve, see Section 3.5.2. |
| CO2 sensors | After each patient use or as needed. | Wipe with a damp cloth using a registered and approved cleaning/disinfection solution (Table 12-4). Dry before use. | • Ensure that the module/sensor is disconnected and cooled to room temperature before cleaning.
• Do not immerse the module/sensor in liquid. |
Table 12-2. Cleaning and disinfection methods for external devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Frequency</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAMILTON-H900 humidifier</td>
<td>After each patient use or as needed.</td>
<td>Refer to the HAMILTON-H900 Instructions for use.</td>
</tr>
<tr>
<td>Third-party humidifiers</td>
<td>After each patient use or as needed.</td>
<td>Refer to the humidifier Instructions for use.</td>
</tr>
<tr>
<td>SpO2 sensors</td>
<td>After each patient use or as needed.</td>
<td>Refer to the Pulse Oximetry Instructions for use and the sensor manufacturer's Instructions for use.</td>
</tr>
</tbody>
</table>

Table 12-3. Cleaning/disinfection agents for the ventilator

<table>
<thead>
<tr>
<th>Cleaning/disinfection agent</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA-registered cleaning/disinfection agents</td>
<td></td>
</tr>
<tr>
<td>Sani-Cloth Active wipes</td>
<td>n/a</td>
</tr>
<tr>
<td>Approved cleaning/disinfection agents</td>
<td></td>
</tr>
<tr>
<td>Mikrobac Tissues wipes</td>
<td>n/a</td>
</tr>
<tr>
<td>mikrozid sensitive wipes</td>
<td>n/a</td>
</tr>
<tr>
<td>mikrozid AF liquid</td>
<td>Ready for use</td>
</tr>
<tr>
<td>Bacillol 30 Sensitive Foam</td>
<td>Ready for use</td>
</tr>
<tr>
<td>Ethanol</td>
<td>--</td>
</tr>
<tr>
<td>Incidin Foam</td>
<td>Ready for use</td>
</tr>
<tr>
<td>Incidin Pro</td>
<td>0.25% to 4%</td>
</tr>
<tr>
<td>Incidin Rapid</td>
<td>0.25% to 2%</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>--</td>
</tr>
<tr>
<td>Mikrobac forte</td>
<td>0.25% to 4%</td>
</tr>
<tr>
<td>perform</td>
<td>3%</td>
</tr>
<tr>
<td>terralin protect</td>
<td>2%</td>
</tr>
</tbody>
</table>
Table 12-4. Cleaning/disinfection agents for CO2 sensors

<table>
<thead>
<tr>
<th>Cleaning/disinfection agent</th>
<th>LoFlo (sidestream)</th>
<th>CAPNOSTAT 5 (mainstream)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA-registered cleaning/disinfection agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steris Coverage Spray</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PDI Sani Cloth Bleach</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PDI Sani Cloth AF</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Approved cleaning/disinfection agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2% glutaraldehyde solution</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Isopropyl alcohol 70%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A 10% aqueous solution of chlorine bleach</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clinell Wipes</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Speedy Clean</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tuffie</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Tuffie 5</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WIP Anios</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
12.3 Preventive maintenance

Perform preventive maintenance on your ventilator according to the schedule shown in Table 12-5.

The System > Info window shows the number of hours the ventilator has been in operation.

Table 12-5. Preventive maintenance schedule

<table>
<thead>
<tr>
<th>Interval</th>
<th>Part/accessory</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between patients and</td>
<td>Breathing circuit (including mask, inspiratory or expiratory filter, flow</td>
<td>Replace with sterilized or new single-patient use parts and run the preoperational checks</td>
</tr>
<tr>
<td>according to hospital</td>
<td>sensor, nebulizer jar, expiratory valve set)</td>
<td>(Section 5.4).</td>
</tr>
<tr>
<td>policy</td>
<td>Entire ventilator</td>
<td>Run the preoperational checks (Section 5.4).</td>
</tr>
<tr>
<td>Every month (or more</td>
<td>Fan filters (rear panel), air intake filters (white filters on outside of</td>
<td>Check for dust and lint. If needed, replace. See Section 12.4.1.</td>
</tr>
<tr>
<td>often if required)</td>
<td>HEPA filter)</td>
<td></td>
</tr>
<tr>
<td>Every 6 months</td>
<td>Battery</td>
<td>Recharge battery by plugging the ventilator into a primary power source for at least 4 hours.</td>
</tr>
<tr>
<td>Yearly or as necessary</td>
<td>Battery</td>
<td>Have the battery serviced.99</td>
</tr>
<tr>
<td></td>
<td>Galvanic O2 sensor</td>
<td>Replace if depleted. See Section 12.4.2.</td>
</tr>
<tr>
<td></td>
<td>Air intake HEPA filter</td>
<td>Replace. See Section 12.4.1.</td>
</tr>
<tr>
<td></td>
<td>Ventilator</td>
<td>Perform service-related preventive maintenance.99</td>
</tr>
<tr>
<td></td>
<td>CO2 sensor</td>
<td>If the CO2 option is installed, have a CO2 accuracy check performed.99</td>
</tr>
</tbody>
</table>

For the HAMILTON-H900 Humidifier, see the HAMILTON-H900 Service Manual.

99 Must be performed by Hamilton Medical authorized service personnel according to instructions in the Service Manual.
12.4 Performing maintenance tasks

The following sections describe how to clean and replace filters and a galvanic O2 sensor.

12.4.1 Maintaining the filters

Replacing air and HEPA filters

Figure 12-1. Step 1. Remove and replace air filter.

Figure 12-2. Step 2. Remove and replace fan filter.

Figure 12-3. Step 3. Remove back panel.

Figure 12-4. Step 4. Remove and replace HEPA filter. Replace back cover when finished.
12.4.2 Replacing the galvanic O2 sensor

Before proceeding, review the safety information in Chapter 1.

Remove the back cover first (Section 12.4.1, step 3).

To replace the sensor, reverse the steps.

Figure 12-5. Remove connection cable (1). Unscrew the sensor counter-clockwise (2) and remove (3).

12.4.3 Charging and storing batteries

To maintain the battery charge and to prolong the life of the battery, keep the ventilator connected to its primary power source.

Have the battery recharged every 6 months, depending on storage conditions. For details, see Section 15.4.

12.5 Repacking and shipping

CAUTION

Inform Hamilton Medical if you are shipping a contaminated (nonsterilized and nondisinfected) device for service.

If you must ship the ventilator, use the original packing materials. If these materials are not available, contact your Hamilton Medical representative for replacement materials.
13
Configuration

13.1 Overview...252
13.2 Accessing Configuration mode...252
13.3 Configuring general settings ..252
13.4 Selecting mode options ..253
13.5 Configuring MMPs ...254
13.6 Defining Quick setups ...255
13.7 Activating SpO2 and CO2 measurement ...256
13.8 Configuring CPR ventilation ..256
13.9 Configuring connectivity settings ...257
13.10 Copying configuration settings ...260
13.11 Configuring device options ..260
13.1 Overview

During configuration, you set up the ventilator with a default language, main monitoring parameter display, startup settings for a new patient, and units of measure, among other settings.

13.2 Accessing Configuration mode

You can access all Configuration mode settings when the ventilator is in Standby. Access requires a configuration code; contact your administrator.

To access Configuration mode
1. Touch **Tools > Configuration**.
2. Using the keys on the onscreen keypad, type the configuration code; then touch **Enter**.
 The **Configuration** button is enabled.
3. Touch **Configuration**.

The Configuration window appears, displaying the Language window.

You can now define settings and add options.

13.3 Configuring general settings

You can configure some general default settings for the ventilator, including language, units of measure, communication interface to use, and minimum loudness for alarms.

13.3.1 Selecting the default language

To select the user interface language

- Touch **General > Language** and select the desired language.

13.3.2 Selecting the units of measure

To select the units of measure

- Touch **General > Units** and select the unit of measure for pressure, length, and CO2.

13.3.3 Enabling the communication interface

You can connect external devices to the ventilator using the communication interface. For a list of the communication protocols, see Table 2-2. For details about configuring communication with devices using the Hamilton Connect App, see Section 13.9.

To select the communication protocol
1. Touch **Connectivity > More**.
2. Select the desired protocol for use from the RS232 Protocol dropdown list.
3. Restart the ventilator.
 The ventilator must be restarted to establish communication using the selected protocol.

For setup and configuration details, see the *Communication Interface User Guide*, available on MyHamilton.
13.3.4 Setting the minimum alarm loudness (volume)

You can specify a minimum alarm loudness (volume) setting for the ventilator. Once set, the ventilator operator cannot set the alarm volume below the value set here in Configuration.

To set the minimum alarm loudness

1. Touch General > More.
2. Touch the Min. loudness button and choose the minimum alarm volume to allow on the device.

The setting is applied to the ventilator. Note that if the new minimum is greater than the currently set alarm volume, the alarm volume is reset to the new minimum level.

To verify the setting, check the Loudness value in the System > Settings window.

13.3.5 Setting sensitivity for Check flow sensor for water alarm

Applicable for Neonatal patients only.

Under certain conditions, water may accumulate in the flow sensor, which can result in overstated volume measurements.

You can set how sensitive the alarm trigger for water in the flow sensor is. Sensitivity refers to the deviation from the dry value that the flow sensor tolerates before the ventilator generates the Check flow sensor for water alarm. By default, sensitivity is set to 12%. You can also turn off the alarm.

To set the flow sensor sensitivity

1. In Configuration, touch General > More.
2. Activate the FS alarm sensitivity control and set it to the desired value.
 Increasing the value lowers sensitivity; decreasing the value increases sensitivity.

13.3.6 Setting the maximum available Flow in HiFlowO2 for neonates

You can specify the maximum Flow that can be set in HiFlowO2 for neonatal patients. Once set, the ventilator operator cannot set Flow above the value set here in Configuration.

To specify the maximum Flow setting in HiFlowO2 for neonates

1. Touch General > More.
2. Touch the HiFlowO2 limitation control and choose the maximum setting to allow on the device.

13.4 Selecting mode options

You can set the following:
- Mandatory breath timing philosophy to use for PCV+ and APVcmv modes
- Naming convention for volume-controlled, pressure-adaptive modes
- ASV version
- Enable the TI max control for certain invasive modes
13.4.1 Setting breath timing options

The ventilator controls mandatory breath timing using a combination of inspiratory time (TI) and Rate.

For the modes PCV+ and APVcmv, you can set the ventilator to use either of the following to control breath timing: I:E or TI.

To change the breath timing selection

- In the Modes > General > Philosophy window, touch the desired breath timing option.

13.4.2 Choosing the mode naming convention

You can select the naming convention used for adaptive modes: APVcmv / APVsimv or (S)CMV+ / SIMV+.

By default, (S)CMV+ / SIMV+ are used.

To select the mode naming convention

- In the Modes > General > Philosophy window, select the desired option.

13.4.3 Choosing the ASV version

By default, the device uses ASV version 1.1. For details about the different ASV versions, see Section 7.4.1.1.

To select the ASV version

- In the Modes > General > Philosophy window, select the desired version.

13.4.4 Enabling TI max for invasive modes

In Configuration, you can enable or disable the TI max control setting, as desired, for adult/pediatric patients in the following modes: APVsimv, PSIMV+, DuoPAP, and SPONT.

To enable/disable TI max

1. Open the Modes > General > Philosophy window.
2. Touch the Available in invasive modes checkbox to enable/disable the setting.
 A checkmark indicates TI max is enabled.

13.5 Configuring MMPs

You can specify which MMPs are displayed on the ventilator.

The list of entries in the Configuration window is shown in the same order as the MMPs appear on the main display.

To select the MMPs to display

1. In Configuration, touch Graphics, then the MMP tab.
2. In each dropdown list, select the desired parameter to show in that position in the MMP list on the main display.

100 Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.
13.6 Defining Quick setups

A Quick setup refers to a group of settings you define, including patient characteristics, mode selection and control settings, alarm limit settings, and weaning zone limits.

The settings saved with a Quick setup are automatically applied when the setup is selected in the Standby window.

For each patient group, you can configure up to three Quick setups, and can specify a setup to be selected by default when the ventilator is turned on.

13.6.1 Configuring individual setup settings

To configure a Quick setup

1. In Standby mode, configure the ventilator with the parameters you will save as a Quick setup.

 Select:
 – Patient group and sex/height (Adult/Ped) or weight (Neonatal)
 – Ventilation mode
 – Mode control settings
 – Alarm limits
 – Humidifier settings
 – CPR ventilation settings

2. Touch Start ventilation and select the desired graphic layout and graphics to display. See Section 8.3.

3. Return to Standby.

4. Access Configuration mode.

5. In the Configuration window, touch Setups, and then touch the button (1, 2, or 3, or your custom-defined labels) for the setup to configure.

 The General setup configuration window is displayed. Note that the buttons in the left panel now change to provide access to the setup options.

6. Touch Rename setup to give the setup a meaningful name.

 You must define a name as it is used as the Quick setup button label in Standby, as well as in this Configuration window.

7. Select the configuration settings to apply to this setup by touching the appropriate button:
 – To apply the ventilator settings you selected in step 1, touch Use current settings.
 – To apply factory settings, touch Use factory settings.

8. Touch Mode Ctrls > Controls to review patient parameter settings.

 Some parameters are not displayed, as they are based on weight:
 – The following parameters are set based on ideal body weight (IBW) (Adult/Ped): Vt, Rate, T low, T high, and TI.
 – The following parameters are set based on body weight (Neonatal): Vt, Rate, T low, T high, TI, and TI max.
9. Touch **Vt/IBW** (Adult/Ped) or **Vt/Weight** (Neonatal) to set the tidal volume per IBW or weight, respectively.

The ventilator uses the Vt/IBW or Vt/Weight setting in calculations for the following:
- To set the initial delivered Vt in volume-controlled modes
- To set the initial high and low alarm limits for Vt and ExpMinVol

10. Review the alarm settings in the Alarms window.

11. In Vent Status, set patient parameters manually.

 The Vent Status window allows you to configure the weaning zone ranges shown in the Vent Status panel according to your institution’s protocol.

12. Touch the Back button to return to the Default setup window.

Configuration of the Quick setup is complete.

13.6.2 Selecting a default Quick setup

A Default setup comprises a group of settings that are automatically loaded when turning on the ventilator.

After you have configured one or more Quick setups, select the default to use.

To set a Quick setup as the default

- In Configuration, touch Setups and select the setup to use as the default.

13.7 Activating SpO2 and CO2 measurement

To enable SpO2 and/or CO2 measurement on the ventilator, you must activate the associated hardware option in Configuration. See Section 13.11.3.

You must also enable each sensor in the System window. See Section 4.5.

13.8 Configuring CPR ventilation

You can specify the default ventilation mode and control settings to be used during CPR ventilation.

To change the default mode and control settings for CPR ventilation

1. In Configuration, touch Setups, then CPR.

2. Select the desired mode and adjust the control settings, as appropriate.

 Not all control settings are available when configuring the default mode for CPR ventilation. See Table 15-14.

Note that changes apply only to the selected patient group.
13.9 Configuring connectivity settings

When the Hamilton Connect Module is enabled, your ventilator supports both wired and wireless communication methods. These connection types allow you to add the ventilator to a hospital network, connect to a patient monitor or computer, or when used with the Hamilton Connect App, view ventilation-related information from a connected ventilator on a smartphone.

For details about connecting to the ventilator using the Hamilton Connect App, see Section 11.2.

On the ventilator, you can update the Hamilton Connect Module firmware, import and export configuration settings, as well as delete data and settings that are saved to the module.

The Hamilton Connect Configuration Tool is a separate application that allows IT personnel to define the Connectivity configuration settings for the ventilator. For details, see the Hamilton Connect Communication and Configuration Guide.

13.9.1 Updating Hamilton Connect Module firmware

NOTICE

Turning off the device while the firmware is being installed may corrupt the Hamilton Connect Module.

Module firmware updates are provided to you by your Hamilton Medical technical representative.

An update can take up to 10 minutes to complete. Note that you cannot install a firmware version that is older than the version currently installed on the Hamilton Connect Module.

To update the Hamilton Connect Module firmware

1. Insert the provided USB drive containing the update into the USB port on the ventilator (Figure 2-5).

2. In Configuration, touch **Connectivity > Firmware**.

 Information about the currently installed version is displayed, as well as important safety information.

3. Select the desired version to install from the **New version** dropdown list.

4. Touch **Start**.

 Do not turn off the device during the update.

5. When the new firmware is installed, **Update successfully completed** is displayed. Ensure that the new firmware version is displayed. The ventilator is ready to use. You do not need to restart the ventilator.
13.9.2 Copying Connectivity configuration settings

To enable communication using the Hamilton Connect Module, you must first import the Connectivity configuration file created for your ventilator.

This file defines the connection types to enable on your ventilator, as well as the ventilator name and various settings associated with your institution's network.

Connectivity configuration settings are created using the Hamilton Connect Configuration Tool.

If changes need to be made to the contents of this configuration file, you can export the file (Section 13.9.2.2) and modify it in the Configuration Tool.

For details on the Configuration Tool and the Hamilton Connect Module, see the Hamilton Connect Communication and Configuration Guide.

13.9.2.1 Importing Connectivity configuration settings

Once the Connectivity configuration file has been created (using the Hamilton Connect Configuration Tool), you can import the file to the ventilator using a USB drive.

For details about creating the configuration file for your ventilator, see the Hamilton Connect Communication and Configuration Guide.

To import the Connectivity configuration file

1. Insert the USB drive into the USB port on the ventilator (Figure 2-5).
2. In Configuration, touch Connectivity > Configuration.
3. Select the desired Connectivity configuration from the Import configuration dropdown list.
4. Touch Import.

The features defined in the file are now enabled in the System > Settings > Connectivity window.

13.9.2.2 Exporting Connectivity configuration settings

You can export the Connectivity configuration file from the ventilator to a USB drive.

To export the configuration file from the ventilator

1. Insert a USB drive into the USB port on the ventilator (Figure 2-5).
2. In Configuration, touch Connectivity > Configuration.
3. Touch Export.

The configuration file is saved onto the USB drive.
13.9.3 Setting the Hamilton Connect Module to the factory default settings

NOTICE

When ventilator connectivity is reset to the factory defaults, all connection types are disabled.

You can reset the Hamilton Connect Module to the factory default settings, which removes the Connectivity configuration file and deletes all saved data.

To delete only the saved data while retaining the Connectivity configuration, see Section 13.9.5.

Note that the currently installed Hamilton Connect Module firmware version remains unchanged.

To reset the Hamilton Connect Module to the factory default settings

1. In Configuration, touch **Connectivity > Configuration**.
2. Touch **Use factory settings**.
 A confirmation window is displayed. Touch **Yes** to continue or **No** to cancel.
3. When complete, **Reset successful** is displayed.

The Hamilton Connect Module factory defaults are restored.

13.9.4 Removing device pairings

Information for smartphones that have been paired with the ventilator is saved to the Hamilton Connect Module. If desired, you can remove all of the saved pairing information.

To remove all paired device information

1. In Configuration, touch **Connectivity > More**.
2. Touch **Reset pairings**.
 A confirmation window is displayed. Touch **Yes** to continue or **No** to cancel.
3. When complete, **Reset successful** is displayed.

All previously paired device information is deleted from the Hamilton Connect Module.

13.9.5 Deleting data from the Hamilton Connect Module

You can delete data (such as screenshots or ventilation-related data) that has been saved to the Hamilton Connect Module.

To remove saved data

1. In Configuration, touch **Connectivity > More**.
2. Touch **Delete recorded data**.
 A confirmation window is displayed. Touch **Yes** to continue or **No** to cancel.
3. When complete, **Recorded data deleted successfully** is displayed.

All recorded data is deleted from the Hamilton Connect Module. This does not remove information about paired devices or have any effect on the connectivity configuration.
13.10 Copying configuration settings

Before proceeding, review the safety information in Chapter 1.

You can copy and transfer configuration settings to other HAMILTON-C1 devices. For details about configuration settings, ranges, and defaults, see Table 15.9.

You can copy configuration settings to/from the ventilator using a USB drive or with your smartphone using the Hamilton Connect App. You must be in Standby to copy configuration settings.

To copy configuration settings using a USB drive

1. Insert a USB drive into the ventilator USB port. See Figure 2-5.
2. In Configuration, touch Transfer.
3. In the Transfer window, touch Import or Export.
 – The device begins transferring the files. A message is displayed after the files are successfully transferred.
 – Exported files are stored in the import-export config folder on the USB drive.
 – Imported configuration files are immediately applied to the ventilator.

If you remove the USB drive before the files are successfully transferred, you must start over and repeat the process.

13.11 Configuring device options

Before use, you must enable any installed hardware options (for example, CO2 and SpO2), and add and enable software options.

13.11.1 Reviewing installed options

To view installed options

1. In Configuration, touch Options.
2. Touch SW options for software or HW options for hardware.
3. Scroll through the options to review, as needed.

13.11.2 Adding software options

Software options are added using license keys.

Trial versions of software options may be available. Trial options expire and are automatically deactivated after 30 days.

Have all required keys available before proceeding.

To add a software option

1. In Configuration, touch Options.
2. In the Options window, touch SW options.
3. Touch Add options.
4. Type the activation code exactly as provided into the field and touch Enter.
 If the message Option code invalid! appears, re-enter the code.
 The message Option valid indicates the code is correct and the option has been added.

For details, see the Hamilton Connect App Instructions for use.
5. Repeat until all desired software options are added.
6. Touch the X to close the window.
7. Restart the ventilator to enable the options.

Upon turning on the ventilator, the added options are available for use.

13.11.3 Activating hardware options
Communication board-related functions (CO2, SpO2) are activated at two levels:

- The hardware itself must be activated in configuration to make the functionality available to the user, described in this section.
- Sensors that plug into the hardware are individually enabled by the user, as needed, in the System window. See Chapter 4.

To activate hardware options in Configuration
1. Touch Options.
2. In the Options window, touch the HW options tab.
 The window lists hardware that requires activation.
3. Select the checkbox for options to activate.
 A checkmark indicates the option is activated.

Upon exiting Configuration, the activated hardware is available for use.

SpO2 and CO2 sensors require an additional step, and must also be enabled in the System > Sensors window.

13.11.4 Removing options
Note the following:

- Trial options are automatically removed at the end of the trial period.
- Selecting Clear options removes all non-trial options.
- The patient groups on the ventilator, Adult/Ped and Neonatal, are also treated as options. Clearing options removes them and the associated ventilation modes. You must re-add them before using the ventilator on a patient.

To remove software options
You can remove all non-trial software options from the ventilator.

1. In the SW options window, touch Clear options.
 You are prompted to confirm deletion of all non-trial options. See the previous notes.
2. Touch Clear options to remove the options.
 Touch Cancel to leave the options installed.
3. Restart the ventilator.
 Once you restart the ventilator, all options (including patient groups) listed in the window are cleared.
4. To re-add the patient groups and any other desired options, re-enter Configuration mode.
5. Add software options (including the patient groups), as appropriate.
13.11.4.1 Deactivating hardware options

To deactivate hardware options

- In the HW options window, clear the checkboxes to deactivate the hardware.
14

Parts and accessories

14.1 Overview .. 264
14.1 Overview

This chapter lists the parts available for the HAMILTON-C1 ventilator. Note that not all parts are available in all markets.

For additional parts and accessories and ordering information, refer to the e-catalog on the Hamilton Medical website or contact your Hamilton Medical representative.

Figure 14-1. Ventilator parts and accessories
Table 14-1. Ventilator parts and accessories

<table>
<thead>
<tr>
<th>Item no. (ref to Fig 14-1)</th>
<th>Description</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HAMILTON-H900 breathing circuit set, adult/pediatric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC8022, dual limb, single use, preassembled, box of 15</td>
<td>260161</td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC8022-A, dual limb, preassembled, box of 1</td>
<td>260188</td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC4022, single limb, single use, preassembled, box of 15</td>
<td>260186</td>
</tr>
<tr>
<td></td>
<td>HAMILTON-H900 breathing circuit set, neonatal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC8010, dual limb, single use, preassembled, box of 15</td>
<td>260185</td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC8010-A, dual limb, autoclavable, preassembled, box of 1</td>
<td>260189</td>
</tr>
<tr>
<td></td>
<td>Breathing circuit set BC4010, single limb, single use, preassembled, box of 15</td>
<td>260187</td>
</tr>
<tr>
<td>1</td>
<td>Breathing circuit set, coaxial, single use, adult/pediatric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length 1.80 m, box of 20</td>
<td>260206</td>
</tr>
<tr>
<td></td>
<td>Preassembled with flow sensor, length 1.80 m, box of 20</td>
<td>260207</td>
</tr>
<tr>
<td></td>
<td>Length 2.40 m, box of 10</td>
<td>260239</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with flow sensor, length 2.40 m, box of 10</td>
<td>260240</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with expiratory valve set, flow sensor, and elbow adapter, length 2.40 m, box of 10</td>
<td>260127</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with expiratory valve set, flow sensor, and elbow adapter, length 1.80 m, box of 20</td>
<td>260128</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with expiratory valve set, flow sensor, and elbow adapter, length 3.0 m, box of 10</td>
<td>260167</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with expiratory valve set, flow sensor, and elbow adapter, length 4.80 m, box of 8</td>
<td>260168</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with flow sensor and elbow adapter, length 1.80 m, box of 20</td>
<td>260087</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with flow sensor and elbow adapter, length 2.40 m, box of 10</td>
<td>260094</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>Preassembled, with flow sensor and elbow adapter, length 3.0 m, box of 10</td>
<td>260145</td>
</tr>
<tr>
<td></td>
<td>Preassembled, with flow sensor and elbow adapter, length 4.80 m, box of 8</td>
<td>260144</td>
</tr>
<tr>
<td>1</td>
<td>Breathing circuit sets, dual limb, single use, neonatal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With Y-piece, flow sensor, flow sensor calibration adapter, and pressure line with T-piece connectors, length 1.50 m, box of 20</td>
<td>260180</td>
</tr>
<tr>
<td></td>
<td>With Y-piece, flow sensor, flow sensor calibration adapter, and pressure line with T-piece connectors, length 3.0 m, box of 10</td>
<td>260182</td>
</tr>
<tr>
<td></td>
<td>With expiratory valve set, Y-piece, flow sensor, flow sensor calibration adapter, and pressure line with T-piece connectors, length 1.50 m, box of 20</td>
<td>260170</td>
</tr>
<tr>
<td></td>
<td>With expiratory valve set, Y-piece, flow sensor, flow sensor calibration adapter, and pressure line with T-piece connectors, length 3.0 m, box of 10</td>
<td>260169</td>
</tr>
<tr>
<td>1</td>
<td>Breathing circuit sets, dual limb, single use, pediatric/neonatal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With Y-piece, length 1.50 m, box of 20</td>
<td>260241</td>
</tr>
<tr>
<td></td>
<td>With Y-piece, length 3.0 m, box of 20</td>
<td>260244</td>
</tr>
<tr>
<td>1</td>
<td>Breathing circuit sets, autoclavable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Flow sensors, adult/pediatric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow sensor, single use, adult/pediatric, 1.88 m, box of 10</td>
<td>281637</td>
</tr>
<tr>
<td></td>
<td>Flow sensor, single use, adult/pediatric, 2.60 m, box of 10</td>
<td>282049</td>
</tr>
<tr>
<td></td>
<td>Flow sensor, autoclavable, adult/pediatric, 1.88 m, box of 1</td>
<td>950185</td>
</tr>
<tr>
<td></td>
<td>Flow sensor calibration adapter, single use, adult/pediatric, box of 10</td>
<td>279937</td>
</tr>
<tr>
<td></td>
<td>Flow sensor calibration adapter, autoclavable, adult/pediatric, box of 10</td>
<td>282323</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>Flow sensors, neonatal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow sensor, single use, neonatal, 1.60 m, box of 10</td>
<td>260177</td>
</tr>
<tr>
<td></td>
<td>Flow sensor, single use, neonatal, 1.88 m, box of 10</td>
<td>155500</td>
</tr>
<tr>
<td></td>
<td>Flow sensor, single use, neonatal, 3.10 m, box of 10</td>
<td>260179</td>
</tr>
<tr>
<td></td>
<td>Flow sensor calibration adapter, single use, neonatal, box of 10</td>
<td>279964</td>
</tr>
<tr>
<td>8</td>
<td>Expiratory valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expiratory valve set, autoclavable, adult/pediatric, box of 1</td>
<td>161175</td>
</tr>
<tr>
<td></td>
<td>Membrane, expiratory valve, autoclavable, adult/pediatric/neonatal, box of 5</td>
<td>161390</td>
</tr>
<tr>
<td></td>
<td>Expiratory valve set, single use, adult/pediatric, box of 10</td>
<td>161186</td>
</tr>
<tr>
<td></td>
<td>Expiratory valve set, autoclavable, neonatal (incl. membrane, expiratory valve)</td>
<td>161188</td>
</tr>
<tr>
<td></td>
<td>Expiratory valve set, single use, neonatal, box of 10</td>
<td>161189</td>
</tr>
<tr>
<td>not shown</td>
<td>Pressure-monitoring line (for nCPAP, nCPAP-PC modes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressure line, single use, neonatal/pediatric, 1.60 m, box of 10</td>
<td>260174</td>
</tr>
<tr>
<td></td>
<td>Pressure line, single use, neonatal/pediatric, 3.10 m, box of 10</td>
<td>260176</td>
</tr>
<tr>
<td></td>
<td>Luerlock adapter kit for nCPAP/nCPAP-PC with breathing set, single use, neonatal, box of 50</td>
<td>279971</td>
</tr>
<tr>
<td>not shown</td>
<td>Nasal cannulas (adult/pediatric/neonatal)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Masks and accessories, adult/pediatric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Masks and accessories, neonatal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nCPAP Starter kit, large (10 sets, incl. mask, prongs, and bonnets)</td>
<td>281975</td>
</tr>
<tr>
<td></td>
<td>nCPAP Starter kit, small (1 set, incl. mask, prongs, and bonnets)</td>
<td>282330</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>not shown</td>
<td>CO2 mainstream measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAMILTON CAPNOSTAT-5 CO2 sensor (90° angled)</td>
<td>282157</td>
</tr>
<tr>
<td></td>
<td>CO2 mainstream airway adapter, single use, adult/pediatric, box of 10</td>
<td>281719</td>
</tr>
<tr>
<td></td>
<td>CO2 mainstream airway adapter, single use, neonatal, box of 10</td>
<td>281720</td>
</tr>
<tr>
<td></td>
<td>CO2 mainstream airway adapter, reusable, adult/pediatric, box of 1</td>
<td>281721</td>
</tr>
<tr>
<td></td>
<td>CO2 mainstream airway adapter, reusable, neonatal, box of 1</td>
<td>281722</td>
</tr>
<tr>
<td></td>
<td>OD15/ID15 adapter, single use, neonatal, box of 25</td>
<td>281803</td>
</tr>
<tr>
<td>not shown</td>
<td>CO2 sidestream measurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAMILTON LoFlo sidestream CO2 sensor</td>
<td>281928</td>
</tr>
<tr>
<td></td>
<td>CO2 sidestream adapter, single use, adult/pediatric, box of 10</td>
<td>281929</td>
</tr>
<tr>
<td></td>
<td>CO2 sidestream adapter, single use, adult/pediatric, box of 10</td>
<td>281931</td>
</tr>
<tr>
<td></td>
<td>CO2 sidestream adapter, single use, neonatal/pediatric, box of 10</td>
<td>281930</td>
</tr>
<tr>
<td></td>
<td>CO2 sidestream adapter, single use, neonatal, box of 10</td>
<td>281932</td>
</tr>
<tr>
<td>7</td>
<td>Humidifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HAMILTON-H900 humidifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Trolley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trolley (incl. humidifier support)</td>
<td>161150</td>
</tr>
<tr>
<td>3</td>
<td>Support arm, quick positioning, basic</td>
<td>281671</td>
</tr>
<tr>
<td>not shown</td>
<td>Tubing holder, dual</td>
<td>282722</td>
</tr>
<tr>
<td>4</td>
<td>Water bottle holder with quick lock (max. 1 kg per side)</td>
<td>160162</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>5</td>
<td>Cylinder holder</td>
<td>161152</td>
</tr>
<tr>
<td>not shown</td>
<td>Small basket (max. 3 kg capacity)</td>
<td>10101016</td>
</tr>
<tr>
<td>not shown</td>
<td>Large basket (max. 5 kg capacity)</td>
<td>10101017</td>
</tr>
<tr>
<td>6</td>
<td>Demonstration lung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IntelliLung, maximum 1 liter</td>
<td>281869</td>
</tr>
<tr>
<td></td>
<td>Demonstration lung assembly with endotracheal tube, adult, 2 liter, with OD15 connector</td>
<td>151815</td>
</tr>
<tr>
<td></td>
<td>Demonstration lung assembly with endotracheal tube, pediatric, 0.5 liter, with OD15/OD22 connector</td>
<td>151816</td>
</tr>
<tr>
<td></td>
<td>Demonstration lung, neonatal, OD15</td>
<td>R53353</td>
</tr>
<tr>
<td></td>
<td>A passive lung simulator with two independent compartments for simulating neonatal patients.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter set</td>
<td>161275</td>
</tr>
<tr>
<td></td>
<td>Air intake dust filter and fan filter, set of 5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Filter, air intake (HEPA)</td>
<td>161236</td>
</tr>
<tr>
<td>not shown</td>
<td>Patient filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HME filter (HMEF), single use, adult/pediatric</td>
<td>279963</td>
</tr>
<tr>
<td></td>
<td>HME filter (HMEF), single use, adult/pediatric</td>
<td>279974</td>
</tr>
<tr>
<td></td>
<td>Expiratory bacteria filter</td>
<td>279204</td>
</tr>
<tr>
<td></td>
<td>Inspiratory bacteria filter</td>
<td>279211</td>
</tr>
<tr>
<td>not shown</td>
<td>Power cord</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power cord with US plug, 2-pin, 3.0 m</td>
<td>355198</td>
</tr>
<tr>
<td></td>
<td>Power cord with British angled plug, 3.0 m</td>
<td>355199</td>
</tr>
<tr>
<td></td>
<td>Power cord with continental European plug, 2-pin, 3.0 m</td>
<td>355200</td>
</tr>
<tr>
<td></td>
<td>Power cord with Chinese plug, 3.0 m</td>
<td>355308</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>not shown</td>
<td>Cover</td>
<td>10112719</td>
</tr>
<tr>
<td></td>
<td>Cover, potential equalization conductor, white</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oxygen sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galvanic O2 sensor</td>
<td>396200</td>
</tr>
<tr>
<td></td>
<td>Galvanic O2 sensor, lead free</td>
<td>10110473</td>
</tr>
<tr>
<td>not shown</td>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended communication board CO2, Nurse call, COM1</td>
<td>161520</td>
</tr>
<tr>
<td></td>
<td>Extended communication board CO2, SpO2, COM1</td>
<td>161636</td>
</tr>
<tr>
<td></td>
<td>Extended communication board CO2, SpO2, COM1 (for communication with the HAMILTON-H900 humidifier)</td>
<td>10076964</td>
</tr>
<tr>
<td></td>
<td>Cable to COM1, 26 cm</td>
<td>161545</td>
</tr>
<tr>
<td></td>
<td>Cable to COM1, 50 cm</td>
<td>161650</td>
</tr>
<tr>
<td></td>
<td>Communication Y-cable to HAMILTON-H900 and RS-232</td>
<td>10077038</td>
</tr>
<tr>
<td></td>
<td>Cable to HAMILTON-H900</td>
<td>950473</td>
</tr>
<tr>
<td></td>
<td>Potential equalization USB cable</td>
<td>10102483</td>
</tr>
<tr>
<td></td>
<td>Cable, Nurse Call</td>
<td>160166</td>
</tr>
<tr>
<td>not shown</td>
<td>Battery</td>
<td>369108</td>
</tr>
<tr>
<td></td>
<td>Li-Ion battery</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>High-pressure oxygen connector</td>
<td>160470</td>
</tr>
<tr>
<td></td>
<td>DISS – diameter index safety standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIST – no interchangeable screw thread</td>
<td>160471</td>
</tr>
<tr>
<td>not shown</td>
<td>Gas supply hoses and parts</td>
<td>279913</td>
</tr>
<tr>
<td></td>
<td>Coupling insert for low pressure O2 inlet, 4.8 mm ID</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>SpO2 sensors and accessories (Masimo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>SpO2 sensors and accessories (Nihon Kohden)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Nebulizer and accessories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>not shown</td>
<td>Tools and test equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See the Hamilton Medical e-catalog.</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Ventilator hardware and mounting options</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shelf mount plate</td>
<td>161439</td>
</tr>
<tr>
<td></td>
<td>Universal bed mount</td>
<td>161148</td>
</tr>
<tr>
<td></td>
<td>Language kit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>10102106</td>
</tr>
<tr>
<td></td>
<td>English-US</td>
<td>10102187</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>10102107</td>
</tr>
<tr>
<td></td>
<td>Spanish</td>
<td>10102108</td>
</tr>
<tr>
<td></td>
<td>French</td>
<td>10102109</td>
</tr>
<tr>
<td></td>
<td>Italian</td>
<td>10102113</td>
</tr>
<tr>
<td></td>
<td>Russian</td>
<td>10102110</td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>10102111</td>
</tr>
<tr>
<td></td>
<td>Portuguese</td>
<td>10102112</td>
</tr>
<tr>
<td></td>
<td>Neonatal Language kit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td>10102114</td>
</tr>
<tr>
<td></td>
<td>English-US</td>
<td>10102188</td>
</tr>
<tr>
<td></td>
<td>German</td>
<td>10102115</td>
</tr>
<tr>
<td></td>
<td>Spanish</td>
<td>10102116</td>
</tr>
<tr>
<td></td>
<td>French</td>
<td>10102117</td>
</tr>
<tr>
<td></td>
<td>Italian</td>
<td>10102121</td>
</tr>
<tr>
<td></td>
<td>Russian</td>
<td>10102118</td>
</tr>
<tr>
<td></td>
<td>Chinese</td>
<td>10102119</td>
</tr>
<tr>
<td></td>
<td>Portuguese</td>
<td>10102120</td>
</tr>
<tr>
<td>Item no. (ref to Fig 14-1)</td>
<td>Description</td>
<td>PN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Extended warranty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended warranty of 1 year</td>
<td>700403</td>
</tr>
<tr>
<td></td>
<td>Extended warranty of 2 years</td>
<td>700404</td>
</tr>
<tr>
<td></td>
<td>Extended warranty of 3 years</td>
<td>700405</td>
</tr>
</tbody>
</table>
15 Specifications

15.1 Physical characteristics ...274
15.2 Environmental requirements ..275
15.3 Pneumatic specifications ...276
15.4 Electrical specifications ...277
15.5 Ventilation-related terminology ...278
15.6 Control settings ...281
15.7 Monitored parameters ..285
15.8 Alarms ..291
15.9 Configuration ..294
15.10 ASV technical data ...297
15.11 Ventilator breathing system specifications299
15.12 Technical performance data ..300
15.13 Functional description of ventilator system308
15.14 Symbols used on device labels and packaging311
15.15 Standards and approvals ...313
15.16 Disposal and year of manufacture ..315
15.17 Warranty ..315
15.1 Physical characteristics

Table 15-1. Physical characteristics

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>4.9 kg (10.8 lb)</td>
</tr>
<tr>
<td></td>
<td>16.9 kg (37.3 lb) with trolley</td>
</tr>
<tr>
<td></td>
<td>The trolley can accommodate a maximum safe working load of 44 kg (97 lb).</td>
</tr>
</tbody>
</table>

Gas cylinder dimensions

| Diameter: 100 to 140 mm (3.9 to 5.5 in) |
| Height: max. 820 mm (32 in) |
| Weight: max. 8 kg (17.6 lb) |

Dimensions

See the following figures.

Figure 15-1. HAMILTON-C1 dimensions

Figure 15-2. HAMILTON-C1 trolley dimensions

102 For accessories, see Section 14.
103 The maximum safe working load applies to a stationary, properly load-balanced trolley.
15.2 Environmental requirements

Table 15-2. Environmental requirements

<table>
<thead>
<tr>
<th>Environment</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operation: 5°C to 40°C (41°F to 104°F)</td>
</tr>
<tr>
<td></td>
<td>Shipment/storage: -20°C to 60°C (-4°F to 140°F), in original packaging</td>
</tr>
<tr>
<td>Altitude</td>
<td>-650 to 4000 m (-2,132 to 13,123 ft)</td>
</tr>
<tr>
<td></td>
<td>(Note that at higher altitudes the ventilator performance may be limited. The Performance limited by high altitude alarm is generated and a message is shown on the display. See Table 9-2.)</td>
</tr>
<tr>
<td>Atmospheric</td>
<td>Operation 620 to 1100 hPa</td>
</tr>
<tr>
<td>pressure</td>
<td>(Operation, shipment, and storage: 620 to 1100 hPa)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Operation 10% to 95%, noncondensing</td>
</tr>
<tr>
<td></td>
<td>(Operation, shipment, and storage: 10% to 95%, noncondensing)</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>HAMILTON-C1, PN 161001: IP21</td>
</tr>
<tr>
<td></td>
<td>HAMILTON-C1, PN 1610010: IP22</td>
</tr>
</tbody>
</table>

For specifications related to any external devices and sensors, refer to the manufacturer’s Instructions for use.

For specifications related to the mainstream and sidestream CO2 sensor, see Section 15.12.

104 The stated operating conditions apply to operation of the ventilator within the limitations specified in the Intended use.

105 Software version 3.0.x can be installed on the ventilator regardless of the IP rating indicated on the device.
15.3 Pneumatic specifications

Table 15-3. Pneumatic specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-pressure oxygen inlet(^{106})</td>
<td>Pressure: 2.8 to 6 bar / 41 to 87 psi</td>
</tr>
<tr>
<td></td>
<td>Flow: Maximum of 200 l/min</td>
</tr>
<tr>
<td></td>
<td>Connector: DISS (CGA 1240) or NIST</td>
</tr>
<tr>
<td>Low-pressure oxygen inlet(^{106})</td>
<td>Peak pressure: Maximum 6 bar / 87 psi</td>
</tr>
<tr>
<td></td>
<td>Flow: (\leq 15) l/min</td>
</tr>
<tr>
<td></td>
<td>Connector: Quick-coupling system, compatible with Colder Products Company (CPC) PMC series</td>
</tr>
<tr>
<td>Air supply</td>
<td>Integrated blower</td>
</tr>
<tr>
<td>Gas mixing system</td>
<td>Delivered flow (HAMILTON-C1):</td>
</tr>
<tr>
<td></td>
<td>(\bullet > 260) l/min ±10% against ambient pressure (at sea level)</td>
</tr>
<tr>
<td></td>
<td>(\bullet > 200) l/min with 100% oxygen</td>
</tr>
<tr>
<td></td>
<td>Delivered flow (HAMILTON-C1 neo):</td>
</tr>
<tr>
<td></td>
<td>(> 40) l/min ±10% against ambient pressure (at sea level)</td>
</tr>
<tr>
<td></td>
<td>Delivered pressure: Adult/Ped: 0 to 60 cmH2O</td>
</tr>
<tr>
<td></td>
<td>Neonatal: 0 to 45 cmH2O</td>
</tr>
<tr>
<td></td>
<td>Flow accuracy: (\pm 10)% or (\pm 300) ml/min (whichever is greater)</td>
</tr>
<tr>
<td>Inspiratory outlet (To patient port)</td>
<td>Connector: ISO ID15/OD22 conical</td>
</tr>
<tr>
<td>Expiratory outlet (From patient port)</td>
<td>Connector (on expiratory valve): ISO ID15/OD22 conical</td>
</tr>
</tbody>
</table>

\(^{106}\) Measurement expressed in STPD (standard temperature and pressure, dry).
15.4 Electrical specifications

Table 15-4. Electrical specifications

<table>
<thead>
<tr>
<th>Element</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>100 to 240 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Power consumption</td>
<td>50 VA typical, 150 VA maximum</td>
</tr>
<tr>
<td>Battery</td>
<td>Hamilton Medical provides a high-capacity107 battery.</td>
</tr>
<tr>
<td></td>
<td>Electrical specifications: 10.8 V DC, 6.7 Ah, 72 Wh</td>
</tr>
<tr>
<td></td>
<td>Type: Lithium-ion, supplied by Hamilton Medical only</td>
</tr>
<tr>
<td></td>
<td>Recharge time: While ventilator is connected to primary power, approximately 3.25 h to fully recharge one battery.</td>
</tr>
<tr>
<td></td>
<td>Storage: -20°C to 60°C, ≤ 85% relative humidity. The storage location should be free from vibration, dust, direct sunlight, moisture, and corrosive gases, and with a recommended temperature range < 21°C. Extended exposure to temperatures above 45°C can degrade battery performance and life.</td>
</tr>
<tr>
<td>Battery</td>
<td>Normal operating time: Operating times are measured with one fully charged battery, the blower in use, without communication board, and with the following settings: Mode = PCV+, Rate = 10 b/min, ΔPcontrol = 10 cmH2O, I:E = 1:4, PEEP = 5 cmH2O, Flow trigger = 5 l/min, FiO2 = 40%. Approximate operating times under these conditions are as follows: One battery, display brightness = 80%: 4 h One battery, display brightness = 20%: 4.5 h This operating time applies to new, fully charged Li-ion batteries not exposed to extreme temperatures. The actual operating time depends on battery age and on how the battery is used and recharged.</td>
</tr>
</tbody>
</table>

107 PN 369108, revision 4 and later.
15.5 Ventilation-related terminology

The following sections describe ventilation-related terminology displayed on Hamilton Medical ventilators in comparison with the conventions defined in EN ISO 19223:2019.

Table 15-5. Comparison of ventilation mode terminology, Hamilton Medical ventilators and EN ISO 19223:2019

<table>
<thead>
<tr>
<th>Hamilton Medical mode name</th>
<th>EN ISO 19223 mode terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)CMV+/APVcmv</td>
<td>A/C-vtPC</td>
<td>Synchronized controlled mandatory ventilation with volume-targeted pressure control</td>
</tr>
<tr>
<td>SIMV+/APVsimv</td>
<td>SIMV-vtPC\PS</td>
<td>Synchronized intermittent mandatory ventilation with volume-targeted pressure control and pressure support</td>
</tr>
<tr>
<td>VS</td>
<td>CSV-vtPS</td>
<td>Continuous spontaneous ventilation with volume-targeted pressure support</td>
</tr>
<tr>
<td>PCV+</td>
<td>A/C-PC</td>
<td>Synchronized pressure-controlled ventilation</td>
</tr>
<tr>
<td>PSIMV+</td>
<td>SIMV-PC\PS</td>
<td>Synchronized intermittent mandatory pressure controlled ventilation with pressure support</td>
</tr>
<tr>
<td>DuoPAP</td>
<td>SIMV-PC\PS</td>
<td>Synchronized intermittent mandatory ventilation with synchronized termination pressure control, pressure support and ACAP(^{108})</td>
</tr>
<tr>
<td>APRV</td>
<td>IMV-PC\PS</td>
<td>Intermittent mandatory pressure controlled ventilation with pressure support</td>
</tr>
<tr>
<td>SPONT</td>
<td>CSV-PS</td>
<td>Continuous spontaneous ventilation with pressure support</td>
</tr>
<tr>
<td>ASV</td>
<td>ASV(^{109})</td>
<td>Synchronized intermittent mandatory ventilation with volume-targeted pressure control and pressure support</td>
</tr>
</tbody>
</table>

\(^{108}\) ACAP is defined as assured constant airway pressure.

\(^{109}\) EN ISO 19223 is not applicable because rate and tidal volume are variable in this mode.
<table>
<thead>
<tr>
<th>Hamilton Medical mode name</th>
<th>EN ISO 19223 mode terminology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTELLiVENT-ASV</td>
<td>INTELLiVENT-ASV</td>
<td>Ventilator management of CO2 elimination and oxygenation based on clinician defined target ranges and parameter limits, and physiological input from the patient. The underlying mode is ASV.</td>
</tr>
<tr>
<td>NIV</td>
<td>CSV-PS</td>
<td>Continuous spontaneous ventilation with pressure support</td>
</tr>
<tr>
<td>NIV-ST</td>
<td>SIMV-PC</td>
<td>Synchronized intermittent mandatory ventilation with pressure control</td>
</tr>
<tr>
<td>nCPAP</td>
<td>CPAP</td>
<td>Continuous positive airway pressure with ACAP</td>
</tr>
<tr>
<td>nCPAP-PC</td>
<td>CSV-PC</td>
<td>Continuous spontaneous ventilation with pressure control</td>
</tr>
</tbody>
</table>
Control parameter terminology

Table 15-6. Comparison of control-related terminology, Hamilton Medical ventilators and EN ISO 19223:2019

<table>
<thead>
<tr>
<th>Hamilton Medical terminology</th>
<th>EN ISO 19223 terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔPsupport</td>
<td>Δp (support pressure)</td>
</tr>
<tr>
<td>ΔPcontrol</td>
<td>Δp (delta inspiratory pressure)</td>
</tr>
<tr>
<td>ΔPinsp</td>
<td>Δp</td>
</tr>
<tr>
<td>P high</td>
<td>BAP(_H) (baseline pressure high)</td>
</tr>
<tr>
<td>P low</td>
<td>BAP (baseline pressure)</td>
</tr>
<tr>
<td>PEEP/CPAP</td>
<td>BAP (baseline pressure)</td>
</tr>
<tr>
<td>P-ramp</td>
<td>Rise time</td>
</tr>
<tr>
<td>Plimit</td>
<td>APL (adjustable pressure limit)</td>
</tr>
<tr>
<td>Vt</td>
<td>(V_T) (tidal volume)</td>
</tr>
<tr>
<td>%MinVol</td>
<td>%(V_M) (minute volume in relation to ideal body weight)</td>
</tr>
<tr>
<td>Flow (in high flow oxygen therapy)</td>
<td>Continuous flow</td>
</tr>
</tbody>
</table>

Monitoring parameter terminology

Table 15-7. Comparison of monitoring-related terminology, Hamilton Medical ventilators and EN ISO 19223:2019

<table>
<thead>
<tr>
<th>Hamilton Medical terminology</th>
<th>EN ISO 19223 terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>PEEP</td>
</tr>
<tr>
<td>Paw</td>
<td>paw</td>
</tr>
<tr>
<td>Ppeak</td>
<td>Peak inspiratory pressure or peak pressure</td>
</tr>
<tr>
<td>Pplateau</td>
<td>Plateau inspiratory pressure or plateau pressure</td>
</tr>
<tr>
<td>AutoPEEP</td>
<td>AP (auto-PEEP)</td>
</tr>
<tr>
<td>Insp Flow</td>
<td>Peak inspiratory flow</td>
</tr>
<tr>
<td>Exp Flow</td>
<td>expiratory flow</td>
</tr>
<tr>
<td>ExpMinVol</td>
<td>(V_M) (minute volume)</td>
</tr>
<tr>
<td>MinVol NIV</td>
<td>(V_M\text{Addn}) (additional minute volume)</td>
</tr>
<tr>
<td>MVSpont</td>
<td>(V_M\text{Addn}) (additional minute volume)</td>
</tr>
<tr>
<td>MVSpont NIV</td>
<td>MVSpont NIV</td>
</tr>
<tr>
<td>VTi</td>
<td>(V_T)</td>
</tr>
<tr>
<td>VTE</td>
<td>(V_E)</td>
</tr>
<tr>
<td>VLeak</td>
<td>(V_{\text{Leak}}) (airway leak)</td>
</tr>
<tr>
<td>MV Leak</td>
<td>(V_{\text{Leak}}) (leakage minute volume)</td>
</tr>
<tr>
<td>fTotal</td>
<td>RRtot (total rate)</td>
</tr>
<tr>
<td>fSpont</td>
<td>RRspont (spontaneous rate)</td>
</tr>
<tr>
<td>fControl</td>
<td>Rate</td>
</tr>
<tr>
<td>I:E</td>
<td>I:E</td>
</tr>
<tr>
<td>TI</td>
<td>(t_i) or (t_H) (inspiratory time)</td>
</tr>
<tr>
<td>T high</td>
<td>(t_H)</td>
</tr>
<tr>
<td>T low</td>
<td>(t_L), BAP phase</td>
</tr>
<tr>
<td>Flow trigger</td>
<td>Flow trigger</td>
</tr>
<tr>
<td>ETS</td>
<td>Term’n Flow % (inspiratory termination flow or termination flow)</td>
</tr>
<tr>
<td>Base flow</td>
<td>Bias flow</td>
</tr>
</tbody>
</table>

\(^{110}\) Calculated using the least squares fitting method.
15.6 Control settings

Table 15-8. Control settings, ranges, and accuracy

<table>
<thead>
<tr>
<th>Parameter or setting (unit)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Default settings: Adult/Ped</th>
<th>Default settings: Neonatal</th>
<th>Accuracy(^{111})</th>
</tr>
</thead>
<tbody>
<tr>
<td>%MinVol(^{112}) (%)</td>
<td>25–350</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Apnea backup</td>
<td>On, Off</td>
<td>On, Off</td>
<td>On</td>
<td>On</td>
<td>--</td>
</tr>
<tr>
<td>ETS(^{113}, 114) (%)</td>
<td>5–80</td>
<td>5–80</td>
<td>25</td>
<td>25</td>
<td>--</td>
</tr>
<tr>
<td>Flow(^{115}) (l/min)</td>
<td>2–60</td>
<td>2–15</td>
<td>15</td>
<td>2</td>
<td>±10% or ±1 l/min, whichever is greater</td>
</tr>
<tr>
<td>I:E(^{116})</td>
<td>1:9–4:1</td>
<td>1:9–4:1</td>
<td>1:4</td>
<td>1:3</td>
<td>--</td>
</tr>
<tr>
<td>IBW(^{117}) (kg)</td>
<td>3–139</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Oxygen (%)</td>
<td>21–100</td>
<td>21–100</td>
<td>50</td>
<td>50</td>
<td>± (volume fraction of 2.5% + 2.5% gas level)</td>
</tr>
<tr>
<td>P high (in APRV) (cmH(_2)O)</td>
<td>0–60</td>
<td>0–45</td>
<td>20 startup setting = PEEP + 15</td>
<td>20 startup setting = PEEP + 15</td>
<td>±5% or ±1 cmH(_2)O, whichever is greater</td>
</tr>
<tr>
<td>P high (in DuoPAP) (cmH(_2)O)</td>
<td>0–60</td>
<td>3–45</td>
<td>20</td>
<td>20</td>
<td>±5% or ±1 cmH(_2)O, whichever is greater</td>
</tr>
</tbody>
</table>

\(^{111}\) The stated accuracy includes the tolerance interval for each measurement.

\(^{112}\) Only in ASV mode.

\(^{113}\) Expiratory trigger sensitivity, in % of inspiratory peak flow.

\(^{114}\) When selecting a noninvasive mode, the device uses the ETS value used in the previous mode, if available. If the previous mode did not use ETS, the device sets ETS to default values.

\(^{115}\) Only when using HiFlowO2.

\(^{116}\) In PCV+, (S)CMV, and APVcmv modes, mandatory breath timing can be controlled by using a combination of inspiratory time (TI) and Rate, or by the I:E ratio; set the method in Configuration. All other modes are controlled by using a combination of inspiratory time (TI) and Rate.

\(^{117}\) IBW is calculated using height and sex, and is used for adult and pediatric patients. Actual body weight is used for neonates.
<table>
<thead>
<tr>
<th>Parameter or setting (unit)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Default settings: Adult/Ped</th>
<th>Default settings: Neonatal</th>
<th>Accuracy(^\text{111})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P low (in APRV) (cmH(_2)O)</td>
<td>0–35</td>
<td>0–25</td>
<td>5</td>
<td>5</td>
<td>±5% or ±1 cmH(_2)O, whichever is greater</td>
</tr>
<tr>
<td>Pat. height (cm) (in)</td>
<td>30–250 12–98</td>
<td>--</td>
<td>174</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PEEP/CPAP (cmH(_2)O)</td>
<td>0–35</td>
<td>3–25</td>
<td>5</td>
<td>5</td>
<td>±5% or ±1 cmH(_2)O, whichever is greater</td>
</tr>
<tr>
<td>Plimit (cmH(_2)O)</td>
<td>5–60</td>
<td>5–45</td>
<td>30</td>
<td>30</td>
<td>±5% or ±1 cmH(_2)O, whichever is greater</td>
</tr>
<tr>
<td>P-ramp(^\text{118}) (ms)</td>
<td>0–2000 ASV, NIV, NIV-ST, SPONT: max = 200</td>
<td>0–600 NIV, NIV-ST, SPONT, nCPAP-PC: max = 200</td>
<td>70</td>
<td>50</td>
<td>±10</td>
</tr>
<tr>
<td>Rate(^\text{119}) (b/min)</td>
<td>1–80 APVcmv, PCV+: 4–80 PSIMV+, NIV-ST: 5–80</td>
<td>1–80 PSIMV+: 5–80 nCPAP-PC, APVcmv, PCV+, PSIMV+PSync, NIV-ST, APVsimv + Apnea Backup: 10–80</td>
<td>35 (3.0–5.9 IBW)</td>
<td>60 (0.2–1.25 kg)</td>
<td>±1</td>
</tr>
</tbody>
</table>

\(^{118}\) P-ramp is limited to one-third (1/3) of TI time. Adjustment of TI time can override the P-ramp setting. Limitation in ASV, SPONT, NIV, NIV-ST, nCPAP-PC: max 200 ms.

\(^{119}\) Startup setting derived from IBW (adult/pediatric), body Weight setting (neonatal). Does not apply in ASV mode.
<table>
<thead>
<tr>
<th>Parameter or setting (unit)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Default settings: Adult/Ped</th>
<th>Default settings: Neonatal</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set temp (^{120}) (°C)</td>
<td>INV: 35–41 NIV: 30–35</td>
<td>INV: 35–41 NIV: 30–35</td>
<td>INV: 37 NIV: 31</td>
<td>INV: 37 NIV: 31</td>
<td>INV: 0.5 NIV: 0.5 HiFlowO2: 2</td>
</tr>
<tr>
<td>Sex</td>
<td>Male, Female</td>
<td>--</td>
<td>Male</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sigh (^{121})</td>
<td>On, Off</td>
<td>--</td>
<td>Off</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SpeakValve compatibility</td>
<td>On, Off</td>
<td>--</td>
<td>Off</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T gradient (^{122}) (°C)</td>
<td>-2–3</td>
<td>-2–3</td>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>T high (in APRV) (^{119}) (s)</td>
<td>0.1–40</td>
<td>0.1–40</td>
<td>Based on rate (IBW)</td>
<td>Based on rate (Weight)</td>
<td>±0.01</td>
</tr>
<tr>
<td>T high (in DuoPAP) (^{119}) (s)</td>
<td>0.1–40</td>
<td>0.1–40</td>
<td>Based on rate (IBW)</td>
<td>Based on rate (Weight)</td>
<td>±0.01</td>
</tr>
<tr>
<td>T low (in APRV) (s)</td>
<td>0.2–40</td>
<td>0.2–40</td>
<td>Based on rate (IBW)</td>
<td>Based on rate (Weight)</td>
<td>±0.01</td>
</tr>
<tr>
<td>TI max (s)</td>
<td>0.5–3</td>
<td>0.25–3</td>
<td>1.5</td>
<td>1.0 (≤ 10 kg) 1.5 (> 10 kg)</td>
<td>±0.1</td>
</tr>
<tr>
<td>TI (^{119, 116, 123}) (s)</td>
<td>0.1–12</td>
<td>0.1–12</td>
<td>Based on rate (IBW)</td>
<td>Based on rate (Weight)</td>
<td>±0.01</td>
</tr>
<tr>
<td>Trigger, flow (^{124}) (l/min)</td>
<td>0.5–20 APVcmv, PCV+: 0.5–20 / Off</td>
<td>0.1–5 APVcmv, PCV+: 0.1–5.0 / Off</td>
<td>5</td>
<td>0.5</td>
<td>±10%</td>
</tr>
</tbody>
</table>

\(^{120}\) When the humidifier is operating in HiFlow, the Set temp control cannot be set to a value higher than 39°C. If the control on the ventilator is set above 39°C, the setting is automatically rounded down to 39°C.

\(^{121}\) Sigh is disabled in DuoPAP and APRV modes, when using HiFlowO2, when using CPR ventilation, and for neonates.

\(^{122}\) T gradient is always set to 2°C when the humidifier is set to HiFlow.

\(^{119}\) Inspiratory time; used with Rate to set the breath cycle time.

\(^{123}\) Flow trigger is leak compensated.

\(^{124}\) Set in Configuration. IBW is calculated using height and sex, and is used for adult and pediatric patients. Actual body weight is used for neonates.
<table>
<thead>
<tr>
<th>Parameter or setting (unit)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Default settings: Adult/Ped</th>
<th>Default settings: Neonatal</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_t/IBW)(^{125}) ((ml/kg))</td>
<td>5–12</td>
<td>5–12</td>
<td>8</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>(V_t/Weight)(^{125}) ((ml/kg))</td>
<td>20–2000</td>
<td>2–300</td>
<td>Based on IBW</td>
<td>Based on Weight</td>
<td>Adult/Ped: (\pm 10%) or (\pm 10) ml, whichever is greater Neo: (\pm 10%) or (\pm 2) ml, whichever is greater</td>
</tr>
<tr>
<td>(V_t)(^{119}) ((ml))</td>
<td>--</td>
<td>0.2–30</td>
<td>--</td>
<td>2.0</td>
<td>--</td>
</tr>
<tr>
<td>(\Delta P_{control})(^{126}) ((cmH2O))</td>
<td>5–60</td>
<td>3–45 (nCPAP-PC: 0–45)</td>
<td>15</td>
<td>15</td>
<td>(\pm 5%) or (\pm 1) cmH2O, whichever is greater</td>
</tr>
<tr>
<td>(\Delta P_{insp})(^{127}) ((cmH2O))</td>
<td>3–60</td>
<td>3–45</td>
<td>15</td>
<td>15</td>
<td>(\pm 5%) or (\pm 1) cmH2O, whichever is greater</td>
</tr>
<tr>
<td>(\Delta P_{support})(^{128}) ((cmH2O))</td>
<td>0–60</td>
<td>0–45</td>
<td>15</td>
<td>15</td>
<td>(\pm 5%) or (\pm 1) cmH2O, whichever is greater</td>
</tr>
</tbody>
</table>

\(^{125}\) Control pressure, added to PEEP/CPAP.

\(^{127}\) Inspiratory pressure, added to PEEP/CPAP.

\(^{128}\) Pressure support, added to PEEP/CPAP.
15.7 Monitored parameters

Table 15-9 provides monitored parameter details.

Tables 15-10 and 15-11 list the ranges of the real-time curves and loops.

Pressure, flow, and volume measurements are based on readings from the flow sensor, and are expressed in BTPS (body temperature and pressure saturated).

Table 15-9. Monitored parameters, ranges, and accuracy

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoPEEP130 (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>Driving pressure, ΔP (cmH2O)</td>
<td>0–100</td>
<td>0–100</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>PEEP/CPAP (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>ΔPinsp131 (cmH2O)</td>
<td>0–50</td>
<td>--</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>Pmean (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>Ppeak (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>Pplateau (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
<tr>
<td>Pprox132 (cmH2O)</td>
<td>0–80</td>
<td>0–80</td>
<td>±2 cmH2O + 4% of the actual reading</td>
</tr>
</tbody>
</table>

The monitored parameters displayed on the ventilator are rounded to the nearest whole number, when required.

Waveforms displayed on the ventilator are not filtered and represent the actual monitored values.

129 The stated accuracy includes the tolerance interval for each measurement, except for measurements displayed from external sensors (CO2). See Section 15.12.1 for details.

130 Not available in nCPAP, nCPAP-PC modes.

131 Inspiratory pressure displayed in the Vent Status panel.

132 Only in HiFlowO2.
<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy<sup>132</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insp Flow (peak)</td>
<td>0–260</td>
<td>0–260</td>
<td>Adult/Ped: ±10% or ±20 ml/s, whichever is greater
Neo: ±10% or ±2 ml/s, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp Flow (peak)<sup>133</sup></td>
<td>0–260</td>
<td>0–260</td>
<td>Adult/Ped: ±10% or ±20 ml/s, whichever is greater
Neo: ±10% or ±2 ml/s, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow (in HiFlowO2)</td>
<td>2–60</td>
<td>2–15</td>
<td>--</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow (in nCPAP/nCPAP-PC)</td>
<td>--</td>
<td>0–30</td>
<td>±10% or ±20 ml/s whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExpMinVol<sup>134, 130</sup></td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>±10% or ±0.3 l/min, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MinVol NIV<sup>135, 130</sup></td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>±10% or ±0.3 l/min, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVSpont<sup>134, 130</sup></td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>±10% or ±0.3 l/min, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVSpont NIV<sup>135, 130</sup></td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>±10% or ±0.3 l/min, whichever is greater</td>
</tr>
<tr>
<td>(l/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTE<sup>134, 130</sup></td>
<td>0–9000</td>
<td>0–9000</td>
<td>Adult/Ped: ±10% or ±10 ml, whichever is greater
Neo: ±10% or ±2 ml, whichever is greater</td>
</tr>
<tr>
<td>(ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTE NIV<sup>135, 130</sup></td>
<td>0–9000</td>
<td>0–9000</td>
<td>±10% or ±10 ml, whichever is greater</td>
</tr>
<tr>
<td>(ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTESpont<sup>130</sup></td>
<td>0–9000</td>
<td>0–9000</td>
<td>±10% or ±10 ml, whichever is greater</td>
</tr>
<tr>
<td>(ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹³² Not available in HiFlowO2 or if SpeakValve is active.
134 Only for invasive modes.
135 NIV is used with noninvasive modes.
<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy<sup>129</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>VTI<sup>130</sup> (ml)</td>
<td>0–9000</td>
<td>0–9000</td>
<td>Adult/Ped: ±10% or ±10 ml, whichever is greater Neo: ±10% or ±2 ml, whichever is greater</td>
</tr>
<tr>
<td>Vt/BW (ml/kg)</td>
<td>2–20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vt/Weight (ml/kg)</td>
<td>--</td>
<td>2–20</td>
<td>--</td>
</tr>
<tr>
<td>VLeak<sup>130</sup> (%)</td>
<td>0–100</td>
<td>0–100</td>
<td>±10% (100 ml < VLeak < 2000 ml)</td>
</tr>
<tr>
<td>MVLeak<sup>130</sup> (l/min)</td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>±10% or ±0.3 l/min whichever is greater</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fControl (b/min)</td>
<td>0–999</td>
<td>0–999</td>
<td>±1 b/min</td>
</tr>
<tr>
<td>fSpont<sup>130</sup> (b/min)</td>
<td>0–999</td>
<td>0–999</td>
<td>±1 b/min</td>
</tr>
<tr>
<td>fTotal (b/min)</td>
<td>0–999</td>
<td>0–999</td>
<td>±1 b/min</td>
</tr>
<tr>
<td>TI (s)</td>
<td>0–60</td>
<td>0–60</td>
<td>±100 ms</td>
</tr>
<tr>
<td>TE (s)</td>
<td>0–60</td>
<td>0–60</td>
<td>±100 ms</td>
</tr>
<tr>
<td>Other calculated and displayed parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR timer (mm:ss)</td>
<td>00:00–99:59</td>
<td>00:00–99:59</td>
<td>--</td>
</tr>
<tr>
<td>Cstat<sup>130</sup> (ml/cmH2O)</td>
<td>0–300</td>
<td>0–300</td>
<td>--</td>
</tr>
<tr>
<td>Oxygen (%)</td>
<td>18–105</td>
<td>18–105</td>
<td>± (volume fraction of 2.5% + 2.5% gas level)</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy(^{136})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2 consumption (^{136}) (l/min)</td>
<td>0–300</td>
<td>0–300</td>
<td>±10% or ±0.3 l/min, whichever is greater</td>
</tr>
<tr>
<td>P0.1 (^{130}) (cmH2O)</td>
<td>-99–0</td>
<td>-99–0</td>
<td>--</td>
</tr>
<tr>
<td>PTP (^{130}) (cmH2O*s)</td>
<td>0–99</td>
<td>0–99</td>
<td>--</td>
</tr>
<tr>
<td>RExp (^{137, 130}) (s)</td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>--</td>
</tr>
<tr>
<td>Rinsp (^{130}) (cmH2O / (l/s))</td>
<td>0–999</td>
<td>0–999</td>
<td>--</td>
</tr>
<tr>
<td>RSB (^{130}) (1 / (l*min))</td>
<td>0–400</td>
<td>0–400</td>
<td>--</td>
</tr>
<tr>
<td>Ventilation counter (days/hours/minutes)</td>
<td>0–999</td>
<td>0–999</td>
<td>--</td>
</tr>
</tbody>
</table>

CO2 related \(^{138}\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FetCO2 (%)</td>
<td>0–20</td>
<td>0–20</td>
<td>CO2 (BTPS): 0–40 mmHg: ±2 mmHg 41–70 mmHg: ±5% of reading 71–100 mmHg: ±8% of reading 101–150 mmHg: ±10% of reading For sidestream CO2 sensor above 80 b/min: ±12% of reading</td>
</tr>
<tr>
<td>PetCO2 (mmHg)</td>
<td>0–150</td>
<td>0–150</td>
<td></td>
</tr>
<tr>
<td>slopeCO2 (^{139}) (%CO2/l)</td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>--</td>
</tr>
<tr>
<td>Vtalv (^{139}) (ml)</td>
<td>0–9999</td>
<td>0–9999</td>
<td>--</td>
</tr>
<tr>
<td>V’alv (^{139}) (l/min)</td>
<td>0–20</td>
<td>0–20</td>
<td>--</td>
</tr>
</tbody>
</table>

\(^{136}\) If option is installed.
\(^{137}\) Least square fit method.
\(^{138}\) Only available if the CO2 communication board is installed and the CO2 sensor is enabled.
\(^{139}\) Only for mainstream CO2.
<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy<sup>129</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>V’CO₂<sup>139</sup> (ml/min)</td>
<td>50–9999</td>
<td>50–9999</td>
<td>--</td>
</tr>
<tr>
<td>VDaw<sup>139</sup> (ml)</td>
<td>0–999</td>
<td>0–999</td>
<td>--</td>
</tr>
<tr>
<td>VDaw/VTE<sup>139</sup> (%)</td>
<td>0–100</td>
<td>0–100</td>
<td>--</td>
</tr>
<tr>
<td>VeCO₂<sup>139</sup> (ml)</td>
<td>0–999</td>
<td>0–999</td>
<td>--</td>
</tr>
<tr>
<td>ViCO₂<sup>139</sup> (ml)</td>
<td>0–999</td>
<td>0–999</td>
<td>--</td>
</tr>
</tbody>
</table>

Humidifier related

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range: Adult/Ped</th>
<th>Range: Neonatal</th>
<th>Accuracy<sup>129</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>T humidifier (°C)</td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>--</td>
</tr>
<tr>
<td>T Y-piece (°C)</td>
<td>0–99.9</td>
<td>0–99.9</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 15-10. Real-time waveforms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Y-axis scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>All waveforms show time, in seconds, on the x-axis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult/Ped waveforms: 6, 12, 18, 24, 30; Neonatal waveforms: 3, 6, 12, 18, 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume<sup>140, 141</sup> (V) (ml) / time (s)</td>
<td>0–3200</td>
<td>0–5, 0–10, 0–25, 0–50 (Neonatal default), 0–100, 0–200, 0–400, 0–800 (Adult/Ped default), 0–1600, 0–3200</td>
</tr>
<tr>
<td>Flow<sup>140, 141</sup> (l/min) / time (s)</td>
<td>-300–300</td>
<td>±2.5, ±5, ±10 (Neonatal default), ±15, ±25, ±45, ±75 (Adult/Ped default), ±150, ±300</td>
</tr>
<tr>
<td>Airway pressure (Paw) (cmH2O) / time (s)</td>
<td>-10–80</td>
<td>-5–20, -5–40 (default), -5–80, -5–120</td>
</tr>
<tr>
<td>FCO₂<sup>142</sup> (%) / time (s)</td>
<td>0–10</td>
<td>0–6 (default), 0–10</td>
</tr>
<tr>
<td>PCO₂<sup>142</sup> (mmHg) / time (s)</td>
<td>0–100</td>
<td>0–60 (default), 0–100</td>
</tr>
</tbody>
</table>

¹²⁹Scaled automatically. Not leak compensated.
¹³⁹Not applicable in nCPAP and nCPAP-PC modes.
¹⁴⁰Available with CO₂ option.
Table 15-11. Real-time graphics and loops

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X-axis scale</th>
<th>Y-axis scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASV graphs<sup>143</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASV target graphics: Vt/Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: b/min</td>
<td>0–60</td>
<td>0–5, 0–10, 0–25, 0–50, 0–100, 0–200, 0–400, 0–800 (default), 0–1600, 0–3200</td>
</tr>
<tr>
<td>y-axis: ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loops</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure/Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: cmH2O</td>
<td>-10–80</td>
<td>-300–300</td>
</tr>
<tr>
<td>y-axis: ml</td>
<td>0–3200</td>
<td></td>
</tr>
<tr>
<td>Volume/Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: ml</td>
<td>0–3200</td>
<td>-300–300</td>
</tr>
<tr>
<td>y-axis: l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure/Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: cmH2O</td>
<td>-10–80</td>
<td>-300–300</td>
</tr>
<tr>
<td>y-axis: l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume/PCO<sub>2</sub><sup>144</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: ml</td>
<td>0–3200</td>
<td>0–100</td>
</tr>
<tr>
<td>y-axis: mmHg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume/FCO<sub>2</sub><sup>144</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-axis: ml</td>
<td>0–3200</td>
<td>0–10</td>
</tr>
<tr>
<td>y-axis: %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹⁴³ Not applicable when the HAMILTON-C1 neo option is enabled and the ventilator is dedicated to neonatal ventilation.

¹⁴⁴ Available with CO2 option.
15.8 Alarms

Table 15-12. Adjustable alarm priority, range, defaults, and resolution

<table>
<thead>
<tr>
<th>Alarm (units)</th>
<th>Priority</th>
<th>Range: Adult/Ped</th>
<th>Range: Neo</th>
<th>Default: Adult/Ped</th>
<th>Default: Neo</th>
<th>Resolution</th>
</tr>
</thead>
</table>
| Apnea time¹⁴⁵ (s) | High | 15–60 | 5–60 | 20 | 5 | Adult/Ped: 5
Neonatal: 1 (< 15)
5 (≥ 15) |
| ExpMinVol (high)^{146,145} (l/min) | High | 0.1–50 NIV, NIV-ST: 0.1–50 / Off | 0.03–10 / Off | Based on Rate and Vt: 1.5 * Rate * Vt | Based on Rate and Vt: 1.5 * Rate * Vt | Adult/Ped: 0.1 (< 1)
0.5 (≥ 1)
1 (≥ 10)
Neonatal: 0.01 (< 1)
0.1 (≥ 1) |
| ExpMinVol (low)^{146,145} (l/min) | High | 0.1–50 NIV, NIV-ST: Off / 0.1–50 | Off / 0.01–10 | Based on Rate and Vt: 0.6 * Rate * Vt | Based on Rate and Vt: 0.6 * Rate * Vt | Adult/Ped: 0.1 (< 1)
0.5 (≥ 1)
1 (≥ 10)
Neonatal: 0.01 (< 1)
0.1 (≥ 1) |
| Flow (high)¹⁴⁷ (l/min) | Medium | -- | 8–30 | -- | 15 | 1 |
| fTotal (high)¹⁴⁷ (b/min) | Medium | 0–99 | 2–210 | 40 | 70 | 1 |
| fTotal (low)¹⁴⁷ (b/min) | Medium | 0–99 | 0–200 | 0 | 0 | 1 |

¹⁴⁵ Not applicable in nCPAP and nCPAP-PC modes.

¹⁴⁶ Startup setting derived from IBW (adult/pediatric), body Weight setting (neonatal). Does not apply in ASV mode.

¹⁴⁷ Only active in nCPAP and nCPAP-PC modes.
<table>
<thead>
<tr>
<th>Alarm (units)</th>
<th>Priority</th>
<th>Range: Adult/Ped</th>
<th>Range: Neo</th>
<th>Default: Adult/Ped</th>
<th>Default: Neo</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (high)(^{148,149}) (%)</td>
<td>High</td>
<td>18–105</td>
<td>18–105</td>
<td>55 or +5 % of the current setting</td>
<td>55 or +5 % of the current setting</td>
<td>1</td>
</tr>
<tr>
<td>Oxygen (low)(^{148,149}) (%)</td>
<td>High</td>
<td>18–97</td>
<td>18–97</td>
<td>45 or -5% of the current setting</td>
<td>45 or -5% of the current setting</td>
<td>1</td>
</tr>
<tr>
<td>PetCO2 (high)(^{150}) (mmHg)</td>
<td>Medium</td>
<td>1–100/Off</td>
<td>1–100/Off</td>
<td>60</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>PetCO2 (low)(^{150}) (mmHg)</td>
<td>Medium</td>
<td>Off / 0–99</td>
<td>Off / 0–99</td>
<td>30</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Pressure (high) (cmH2O)</td>
<td>High</td>
<td>15–70</td>
<td>18–55</td>
<td>40</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nCPAP, nCPAP-PC: 10–55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>APRV: 15–55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (low) (cmH2O)</td>
<td>High</td>
<td>4–60</td>
<td>4–55</td>
<td>PEEP</td>
<td>PEEP</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nCPAP, nCPAP-PC: 2–55</td>
<td></td>
<td>nCPAP: 3, nCPAP-PC: 5</td>
<td></td>
</tr>
<tr>
<td>Pressure limitation(^{151}) (cmH2O)</td>
<td>Medium, Low after silence</td>
<td>5–60</td>
<td>8–45</td>
<td>30</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{148}\) Active only when O2 monitoring is enabled.

\(^{149}\) The high and low Oxygen alarm limits are automatically set in relation to the current Oxygen setting: Oxygen setting + 5 (high Oxygen limit) and Oxygen setting - 5 (low Oxygen limit). For example, if the Oxygen setting is 70%, the high Oxygen limit is set to 75 and the low limit is set to 65.

\(^{150}\) CO2 option required.

\(^{151}\) Can also be adjusted using Plimit. Pressure limitation is always 10 cmH2O below the pressure high limit.
<table>
<thead>
<tr>
<th>Alarm (units)</th>
<th>Priority</th>
<th>Range: Adult/Ped</th>
<th>Range: Neo</th>
<th>Default: Adult/Ped</th>
<th>Default: Neo</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt (high)(^{152}) (ml)</td>
<td>Medium</td>
<td>10–3000 / Off</td>
<td>0.1–300 / Off</td>
<td>Vt is based on IBW 1.5 * Vt</td>
<td>Vt is based on Weight 1.5 * Vt</td>
<td>Adult/Ped: 5 (< 100) 10 (< 500) 50 (≥ 500) Neonatal: 0.1 (< 10) 1 (≥ 10) 5 (≥ 100)</td>
</tr>
<tr>
<td>Vt (low)(^{152}) (ml)</td>
<td>Medium</td>
<td>Off / 10–3000</td>
<td>Off / 0.1–300</td>
<td>Vt is based on IBW 0.5 * Vt</td>
<td>Vt is based on Weight 0.5 * Vt</td>
<td>Adult/Ped: 5 (< 100) 10 (< 500) 50 (≥ 500) Neonatal: 0.1 (< 10) 2 (≥ 10) 6 (≥ 100)</td>
</tr>
</tbody>
</table>

\(^{152}\) In ASV mode, this alarm only applies for spontaneous breaths.
15.9 Configuration

Table 15-13. Configuration specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Configuration range</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English, US English, Chinese, Croatian, Czech, Danish, Dutch, Finnish, French, German, Greek, Hungarian, Indonesian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Spanish, Swedish, Turkish, Ukrainian</td>
<td>English</td>
</tr>
<tr>
<td>Units</td>
<td>Pressure: hPa, mbar, cmH2O</td>
<td>cmH2O</td>
</tr>
<tr>
<td></td>
<td>CO2: mmHg, Torr, kPa</td>
<td>mmHg</td>
</tr>
<tr>
<td></td>
<td>Length: cm, in</td>
<td>cm</td>
</tr>
<tr>
<td>More</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. loudness</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FS alarm sensitivity: 5 to 15%, Off</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>HiFlowO2 limitation(^{153}): 2 to 15 l/min</td>
<td>15 l/min</td>
<td></td>
</tr>
<tr>
<td>Modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>Inspiratory time philosophy: I:E, TI</td>
<td>I:E</td>
</tr>
<tr>
<td>Mode label</td>
<td>(S)CMV+/SIMV+ or APVcmv/APVsimv</td>
<td>(S)CMV+/SIMV+</td>
</tr>
<tr>
<td>ASV</td>
<td>ASV, ASV 1.1</td>
<td>ASV 1.1</td>
</tr>
<tr>
<td>Ti max available in invasive modes</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main monitoring parameters (MMP)(^{154})</td>
<td>MMP 1 to 4: Pmean, PEEP/CPAP, Ppeak, (\Delta P) (Driving pressure), ExpMinVol, VTI, VTE, VLeak, fTotal, fSpont, Oxygen, Cstat, Rinsp, I:E, TI, TE, MVSpont, AutoPEEP, P0.1, PTP, RCexp, Pplateau, VTESpont, MVLeak, Insp Flow, Exp Flow, VT/IBW, VT/Weight, T humidifier and T Y-piece (HAMILTON-H900)</td>
<td>Ppeak(^{155}), ExpMinVol, VTE, fTotal</td>
</tr>
<tr>
<td>Settings</td>
<td>For all mode, control, and alarm settings, see the appropriate tables in this chapter.</td>
<td></td>
</tr>
</tbody>
</table>

\(^{153}\) Only applies to the Neonatal patient group.

\(^{154}\) Additional parameters available when the CO2 or SpO2 options are installed.

\(^{155}\) The default setting is configurable.
Parameter

<table>
<thead>
<tr>
<th>Configuration range</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setups</td>
<td>This information applies to the default adult Quick setup configurations. You can also specify default neonatal settings. For information about CPR configuration settings, see Table 15-14.</td>
</tr>
</tbody>
</table>
| **ModeCtrls** | Vt/IBW (Adult/Ped): 5 to 12 ml/kg
Vt/Weight (Neonatal): 5 to 12 ml/kg | Adult/Ped: 8 ml/kg
Neonatal: 5 ml/kg |
| **Vent Status** | Oxygen\(^{156}\) (\%) | 22 to 80 | 40 |
| | PEEP\(^{157}\) (cmH2O) | 1 to 20 | 8 |
| | ΔPinsp (cmH2O) | 1 to 50 | 10 |
| | %MinVol high (\%) | 100 to 250 | 150 |
| | %MinVol low (\%) | 25 to 99 | 50 |
| | RSB high (1 / (l*min)) | 50 to 150 | 100 |
| | RSB low (1 / (l*min)) | 0 to 49 | 10 |
| | %fSpont\(^{158}\) (\%) | 0 to 99 | 75 |
| **Connectivity** | Communication protocol:
Hamilton, GALILEO compatible, Hamilton P2, Philips VueLink Open, DrägerTestProtocol, Hamilton Block Protocol | GALILEO |

\(^{156}\) The low Oxygen setting is always 21%.
\(^{157}\) The low PEEP setting is always 0 cmH2O.
\(^{158}\) The high %fSpont setting is always 100%.
Table 15-14. CPR default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>APVcmv</th>
<th>PCV+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apnea time (s)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Oxygen (%)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>ΔPcontrol (cmH2O)</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>PEEP/CPAP (cmH2O)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Plimit (cmH2O)</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Rate (b/min)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>TI (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vt/IBW (ml/kg)</td>
<td>6</td>
<td>--</td>
</tr>
</tbody>
</table>

For ranges, see Section 15.6.
15.10 ASV technical data

Table 15-15. ASV technical data

<table>
<thead>
<tr>
<th>ASV-related data</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASV-related operator settings</td>
<td></td>
</tr>
<tr>
<td>%MinVol</td>
<td>25% to 350%</td>
</tr>
<tr>
<td>Patient height</td>
<td>Adults: 130 to 250 cm / 50 to 100 in</td>
</tr>
<tr>
<td></td>
<td>Pediatric: 30 to 150 cm / 12 to 60 in</td>
</tr>
<tr>
<td>Internal calculations</td>
<td></td>
</tr>
<tr>
<td>IBW</td>
<td>In kg, calculated based on patient height and sex (see Section 5.3)</td>
</tr>
<tr>
<td>MinVol (target)</td>
<td>In l/min, target minute volume is calculated as: IBW (in kg) x NormMinVent (in l/kg/min) x %MinVol/100 where NormMinVent is the normal minute ventilation from Figure 7-18.</td>
</tr>
<tr>
<td>fTotal</td>
<td>In b/min</td>
</tr>
<tr>
<td>VDaw</td>
<td>2.2 ml/kg IBW</td>
</tr>
<tr>
<td>Vt (target)</td>
<td>MinVol / f(target)</td>
</tr>
<tr>
<td>ASV graph</td>
<td></td>
</tr>
<tr>
<td>Status of patient (numerical)</td>
<td>fControl, fSpont, ΔPinsp</td>
</tr>
<tr>
<td>Graphics display (curve)</td>
<td>fTotal versus Vt, target value, current value, safety window</td>
</tr>
<tr>
<td>Alarms</td>
<td></td>
</tr>
<tr>
<td>All alarms are functional except apnea alarms</td>
<td>See Chapter 9</td>
</tr>
<tr>
<td>Special</td>
<td>ASV: Cannot meet target alarm</td>
</tr>
<tr>
<td>Performance specifications</td>
<td></td>
</tr>
<tr>
<td>Response time (90% of steady state)</td>
<td>< 1 min (typical)</td>
</tr>
<tr>
<td>ASV-related data</td>
<td>Specifications</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Overshoot/undershoot</td>
<td>< 25%</td>
</tr>
<tr>
<td>Maximum pressure change per breath</td>
<td>3 cmH2O</td>
</tr>
<tr>
<td>Settling time</td>
<td>< 120 seconds</td>
</tr>
<tr>
<td>Steady state deviation</td>
<td>< 10%</td>
</tr>
</tbody>
</table>

Lung-protective rules

Minimum Vt	4.4 ml/kg x IBW
Maximum Vt depends on	The maximum tidal volume in ASV is the smallest value of the following conditions:
	• V / Pmedian x (P ASV limit - PEEP)
	• 15 ml/kg x IBW
	• 1.5 x high Vt alarm limit
Maximum machine rate	The maximum rate in ASV is the smallest value of the following conditions:
	• 1 / (minimum inspiratory time + minimum expiratory time)
	• MinVol (target) / Minimum Vt
	• 60 b/min
Minimum target rate	7.5 to 15 b/min (depending on IBW)
Minimum ΔPinsp	5 cmH2O above PEEP/CPAP
Maximum ΔPinsp	High Pressure alarm limit - 10 cmH2O - PEEP
Minimum inspiratory time (TI)	0.5 s or RCexp, whichever is longer
Maximum inspiratory time (TI)	IBW = 30 kg: 2 seconds
	IBW < 30 kg: 1.5 seconds
Minimum expiratory time (Te)	0.5 s or 2 x RCexp, whichever is longer
Maximum expiratory time (Te)	12 seconds
I:E range	1:4 to 1:1
15.11 Ventilator breathing system specifications

Table 15-16. Ventilator breathing system specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance(^{*})</td>
<td>Adult/Ped circuit (ID15 to ID22, flow of 30 l/min)</td>
<td>(\leq 0.06 \text{cmH}_2\text{O/l/min})</td>
</tr>
<tr>
<td></td>
<td>Adult/Ped circuit (ID12 to ID15, flow of 15 l/min)</td>
<td>(\leq 0.12 \text{cmH}_2\text{O/l/min})</td>
</tr>
<tr>
<td></td>
<td>Neonatal circuit (ID09 to ID12, flow of 15 l/min)</td>
<td>(\leq 0.12 \text{cmH}_2\text{O/l/min})</td>
</tr>
<tr>
<td>Compliance(^{*})</td>
<td>Adult/Ped circuit (ID15 to ID22)</td>
<td>(\leq 4.0 \text{ml/cmH}_2\text{O at 60 cmH}_2\text{O}) (\pm 3 \text{cmH}_2\text{O})</td>
</tr>
<tr>
<td></td>
<td>Adult/Ped circuit (ID12 to ID15)</td>
<td>(\leq 4.0 \text{ml/cmH}_2\text{O at 60 cmH}_2\text{O}) (\pm 3 \text{cmH}_2\text{O})</td>
</tr>
<tr>
<td></td>
<td>Neonatal circuit (ID09 to ID12)</td>
<td>(\leq 1.5 \text{ml/cmH}_2\text{O at 60 cmH}_2\text{O}) (\pm 3 \text{cmH}_2\text{O})</td>
</tr>
<tr>
<td>Volume(^{*})</td>
<td>Adult circuit (ID19)</td>
<td>2.4 l</td>
</tr>
<tr>
<td></td>
<td>Neonatal circuit (ID10)</td>
<td>(\sim 0.9 \text{l})</td>
</tr>
<tr>
<td>Bacteria filter</td>
<td>Particle size</td>
<td>Captures particles of 0.3 mm (micron) with > 99.99% efficiency</td>
</tr>
<tr>
<td></td>
<td>Resistance</td>
<td>(< 2.0 \text{cmH}_2\text{O at 60 l/min})</td>
</tr>
<tr>
<td>Flow sensor dead space</td>
<td>Adult/pediatric</td>
<td>(< 9 \text{ ml (single use)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(< 11 \text{ ml (reusable)})</td>
</tr>
<tr>
<td></td>
<td>Neonatal</td>
<td>(< 1.3 \text{ ml})</td>
</tr>
</tbody>
</table>

\(^{*}\) As tested, the inspiratory limb includes ambient valve, flow sensor, inspiratory filter, inspiratory tubes, and humidifier. It does not include the heating wire. The expiratory limb includes expiratory tubes, water trap, expiratory valve, and flow sensor.

Hamilton Medical | HAMILTON-C1 Operator’s Manual
15.12 Technical performance data

Table 15-17. Technical performance data

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient ideal body weight (IBW, determined from Pat. height setting)</td>
<td>3 to 139 kg (6.6 to 306 lb)¹⁶⁰</td>
</tr>
<tr>
<td>Weight (used for neonatal patients)</td>
<td>0.2 to 30 kg (0.44 to 66 lb)</td>
</tr>
<tr>
<td>Inspiratory pressure</td>
<td>0 to 60 cmH₂O</td>
</tr>
<tr>
<td>Maximum limited pressure</td>
<td>60 cmH₂O</td>
</tr>
<tr>
<td>Maximum working pressure</td>
<td>Adult/Ped: 60 cmH₂O (total inspiratory pressure). Ensured through pressure limiting Neonatal: 45 cmH₂O (limitation depending on frequency)</td>
</tr>
<tr>
<td>Maximum inspiratory flow</td>
<td>260 l/min (120 l/min with 100% O₂)</td>
</tr>
<tr>
<td>Tidal volume/target tidal volume</td>
<td>Adult/Ped: 20 to 2000 ml</td>
</tr>
<tr>
<td></td>
<td>Neonatal: 2 to 300 ml</td>
</tr>
<tr>
<td>Minute volume capability</td>
<td>Up to 60 l/min</td>
</tr>
<tr>
<td>Inspiratory time (spontaneous breaths)</td>
<td>0.2 to 3 seconds</td>
</tr>
<tr>
<td>Minimum expiratory time</td>
<td>20% of cycle time; 0.2 to 0.8 seconds</td>
</tr>
<tr>
<td>Automatic expiratory base flow</td>
<td>Adult/Ped: Fixed at 3 l/min</td>
</tr>
<tr>
<td></td>
<td>Neonatal: Fixed at 4 l/min</td>
</tr>
<tr>
<td>Means of inspiratory triggering</td>
<td>Flow trigger control</td>
</tr>
<tr>
<td>Oxygen mixer accuracy</td>
<td>± (volume fraction of 2.5% + 2.5% of actual reading)</td>
</tr>
</tbody>
</table>

¹⁶⁰ Actual patient weight can be much greater (e.g., 300 kg or 661 lb).
Measuring devices

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous oxygen measurement</td>
<td>The delivered oxygen concentration is continuously measured when an O2 sensor is enabled.</td>
</tr>
</tbody>
</table>

Type of sensor: Galvanic lead-free O2 sensor

<table>
<thead>
<tr>
<th>Sensing position:</th>
<th>Inspiratory pneumatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement, delivered oxygen concentration, range:</td>
<td>18% to 105%</td>
</tr>
<tr>
<td>Response time:</td>
<td>< 45 seconds to reach 90% of final oxygen concentration</td>
</tr>
<tr>
<td>Initialization time (time from turning on device to operating performance):</td>
<td>< 40 seconds</td>
</tr>
</tbody>
</table>

Drift:	< 0.1%/month of sensor output signal at dry ambient air
Storage temperature:	-20°C to 40°C (-4°F and 104°F)
	-20°C to 50°C (-4°F and 122°F), for a maximum of 1 week
	To maximize the shelf life of unused lead-free galvanic O2 sensors, store them between 15°C and 25°C (59°F and 77°F).
	Storage at higher temperatures will shorten the life of the lead-free O2 sensor.

<p>| Replacement | Every 2 years or when depleted, whichever comes first |</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous oxygen measurement</td>
<td>Type of sensor: Galvanic O2 sensor</td>
</tr>
<tr>
<td>Sensing position:</td>
<td>Inspiratory pneumatics</td>
</tr>
<tr>
<td>Measurement, delivered oxygen concentration, range:</td>
<td>18% to 105%</td>
</tr>
<tr>
<td>Response time:</td>
<td>≤ 45 seconds to reach 90% of final oxygen concentration</td>
</tr>
<tr>
<td>Initialization time (time from turning on device to operating performance):</td>
<td>< 40 seconds</td>
</tr>
<tr>
<td>Drift:</td>
<td>≤ 1.0% vol. oxygen per month</td>
</tr>
<tr>
<td>Storage temperature:</td>
<td>-20°C to 50°C (-4°F to 122°F)</td>
</tr>
<tr>
<td></td>
<td>To maximize the shelf life of unused galvanic O2 sensors, store them between 5°C and 15°C (41°F and 59°F).</td>
</tr>
<tr>
<td>Replacement</td>
<td>Every year or when depleted, whichever comes first</td>
</tr>
<tr>
<td>Pressure and volume measurements</td>
<td>Type: Differential pressure transducer, variable orifice</td>
</tr>
<tr>
<td>Sensing position:</td>
<td>Patient Y-piece</td>
</tr>
<tr>
<td>Measurements:</td>
<td>See Table 15-9</td>
</tr>
<tr>
<td>Description</td>
<td>Specification</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>CO₂ measurement</td>
<td>Two types of CO₂ sensors are supported: CAPNOSTAT-5 (mainstream) and LoFlo (sidestream)</td>
</tr>
<tr>
<td></td>
<td>Type: CAPNOSTAT 5</td>
</tr>
<tr>
<td>Sensing position:</td>
<td>Mainstream</td>
</tr>
<tr>
<td>Principle of operation:</td>
<td>Nondispersive infrared (NDIR) technology</td>
</tr>
<tr>
<td>Measurements:</td>
<td>See Table 15-9</td>
</tr>
<tr>
<td>Rise time:</td>
<td>< 60 ms</td>
</tr>
<tr>
<td>Initialization time:</td>
<td>Capnogram displayed in < 15 seconds at an ambient temperature of 25°C, full specifications within 2 minutes</td>
</tr>
<tr>
<td>Sampling frequency:</td>
<td>100 Hz</td>
</tr>
<tr>
<td>CO₂ calculation method:</td>
<td>BTPS</td>
</tr>
<tr>
<td>CO₂ stability¹⁶¹:</td>
<td>Short-term drift: ≤ 0.8 mmHg over 4 hours</td>
</tr>
<tr>
<td></td>
<td>Long-term drift: Accuracy specification maintained over 120 hours</td>
</tr>
<tr>
<td>CO₂ noise (rms):</td>
<td>≤ 0.25 mmHg at 7.5% CO₂</td>
</tr>
<tr>
<td>Operating conditions:</td>
<td>Temperature: 0°C to 45°C (32°F to 113°F)</td>
</tr>
<tr>
<td></td>
<td>Humidity: 10% to 90% relative humidity, noncondensing</td>
</tr>
<tr>
<td></td>
<td>Pressure (barometric + airway pressure): 400 mmHg to 850 mmHg</td>
</tr>
<tr>
<td>Storage conditions:</td>
<td>Temperature: -40°C to 70°C (-40°F to 158°F)</td>
</tr>
<tr>
<td></td>
<td>Humidity: < 90% relative humidity, noncondensing</td>
</tr>
<tr>
<td></td>
<td>Pressure (atmospheric): 375 mmHg to 795 mmHg</td>
</tr>
</tbody>
</table>

¹⁶¹ Neither humidity (noncondensing) nor cyclical pressures have any effect on the stated accuracy of the device.
<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 measurement</td>
<td>Type: LoFlo</td>
</tr>
<tr>
<td>Sensing position:</td>
<td>Sidestream</td>
</tr>
<tr>
<td>Principle of operation:</td>
<td>Nondispersive infrared (NDIR) technology</td>
</tr>
<tr>
<td>Measurements:</td>
<td>See Table 15-9</td>
</tr>
<tr>
<td>Rise time:</td>
<td>200 ms for on-airway adapter kits Additional 30 ms for sidestream sampling cannulas. Additional 80 ms for extension line and dehumidification tubing.</td>
</tr>
<tr>
<td>Initialization time:</td>
<td>Capnogram displayed in < 20 seconds at an ambient temperature of 25°C, full specifications within 2 minutes</td>
</tr>
<tr>
<td>Sampling frequency:</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Gas sampling rate:</td>
<td>50 ml/min ±10 ml/min</td>
</tr>
<tr>
<td>CO2 calculation method:</td>
<td>Actual, corrected for temperature and pressure in the sample cell</td>
</tr>
<tr>
<td>CO2 stability(^{161}):</td>
<td>Short-term drift: ≤ 0.8 mmHg over 4 hours Long-term drift: Accuracy specification maintained over 120 hours</td>
</tr>
<tr>
<td>CO2 noise (rms):</td>
<td>≤ 0.25 mmHg at 5% CO2</td>
</tr>
<tr>
<td>Sensing position:</td>
<td>Inside ventilator</td>
</tr>
<tr>
<td>Measurements:</td>
<td>See Table 15-9</td>
</tr>
<tr>
<td>Operating conditions:</td>
<td>Temperature: 0°C to 40°C (32°F to 104°F) Humidity: 10% to 90% relative humidity, non-condensing Pressure (barometric + airway pressure): 400 mmHg to 800 mmHg</td>
</tr>
<tr>
<td>Storage conditions:</td>
<td>Temperature: -40°C to 70°C (-40°F to 158°F) Humidity: 10% to 90% relative humidity, non-condensing Pressure (atmospheric): 400 mmHg to 800 mmHg</td>
</tr>
<tr>
<td>Description</td>
<td>Specification</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tests and special functions</td>
<td>Leak test, flow sensor/circuit/O2 sensor/CO2 sensor zero calibration, O2 enrichment, manual breath, nebulization, leak compensation, communication interface, compensation of breathing circuit resistance and compliance</td>
</tr>
<tr>
<td>Display device</td>
<td>Display of settings, alarms, and monitored data</td>
</tr>
<tr>
<td></td>
<td>Type: Color TFT</td>
</tr>
<tr>
<td></td>
<td>Size: 640 x 480 pixels, 8.4 in (214 mm) diagonal</td>
</tr>
<tr>
<td>Brightness setting for display</td>
<td>The range is 10% to 100% brightness. By default, Day = 80%; Night = 40%.</td>
</tr>
<tr>
<td>Alarm volume (Loudness<sup>162</sup>)</td>
<td>The range is 1 to 10. The default is 5.</td>
</tr>
<tr>
<td>Sound power level<sup>163</sup></td>
<td>51 dB(A) ±3 dB(A)</td>
</tr>
<tr>
<td>Sound pressure level<sup>163</sup></td>
<td>43 dB(A) ±3 dB(A)</td>
</tr>
</tbody>
</table>

¹⁶² Volume at 1 meter distance from ventilator. A setting of 1 = 62 dB(A), 5 = 76 dB(A), and 10 = 85 dB(A), with accuracy of ±3 dB(A).

¹⁶³ Per ISO 80601-2-12.
15.12.1 Accuracy testing

The ventilator’s parameter and measurement accuracy is tested using an IMT FlowAnalyser. The tolerance intervals for the data generated by the FlowAnalyser are as specified below, and are included in the accuracy information provided in this manual.

Table 15-18. Tolerance intervals for accuracy testing

<table>
<thead>
<tr>
<th>Parameter type</th>
<th>Tolerance interval of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>(\leq 50 \text{ ml}: \pm 1%)</td>
</tr>
<tr>
<td></td>
<td>(> 50 \text{ ml}: \pm 1.75%)</td>
</tr>
<tr>
<td>Pressure</td>
<td>(\pm 0.75%) or (\pm 0.1 \text{ cmH}_2\text{O},) whichever is greater</td>
</tr>
<tr>
<td>Flow</td>
<td>(\pm 1.75%) or (\pm 0.5 \text{ l/min},) whichever is greater</td>
</tr>
<tr>
<td>O2</td>
<td>(\pm 1%)</td>
</tr>
</tbody>
</table>

15.12.2 Essential performance

Table 15-19. Essential performance

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas supply failure</td>
<td>Gas supply failure must be detected and the operator informed.</td>
</tr>
<tr>
<td>Oxygen level alarm condition164</td>
<td>If O2 is higher or lower than the set alarm limits or the O2 sensor fails, this must be detected and the operator informed through an alarm.</td>
</tr>
<tr>
<td>SpO2 level alarm condition164</td>
<td>If SpO2 is higher or lower than the set alarm limits or the SpO2 sensor fails, this must be detected and the operator informed through an alarm.</td>
</tr>
<tr>
<td>PEEP</td>
<td>The applied PEEP must be monitored. If it is higher or lower than the alarm limits, this must be detected and the user informed through an alarm.</td>
</tr>
<tr>
<td>Pressure</td>
<td>The airway pressure must be monitored. If it is higher or lower than the set alarm limits, this must be detected and the operator informed through an alarm.</td>
</tr>
<tr>
<td>Volume</td>
<td>The applied and expired volumes must be monitored. If they are higher or lower than the set alarm limits, this must be detected and the operator informed through an alarm.</td>
</tr>
<tr>
<td>Disconnection</td>
<td>Any disconnection of the breathing circuit must be detected and the operator informed through an alarm.</td>
</tr>
<tr>
<td>Obstruction</td>
<td>Any obstruction must be detected and the operator informed through an alarm.</td>
</tr>
</tbody>
</table>

164 If option is installed.
15.12.3 Estimated oxygen consumption relative to minute volume

The following graphs show oxygen consumption as a function of minute volume.

Figure 15-3. Oxygen consumption as a function of minute volume, oxygen set to 60%

1 Oxygen consumption of the device. This accounts for base flow
2 Compressible volume in the breathing circuit.

The compressible volume is a significant factor that must be taken into account for smaller patients due to smaller tidal volumes. See Section 3.4.2.1.
3 Oxygen volume delivered to patient.

Figure 15-4. Oxygen consumption as a function of minute volume, oxygen set to 100%

1 Oxygen consumption of the device. This accounts for base flow
2 Compressible volume in the breathing circuit.

The compressible volume is a significant factor that must be taken into account for smaller patients due to smaller tidal volumes. See Section 3.4.2.1.
3 Oxygen volume delivered to patient.
15.13 Functional description of ventilator system

The HAMILTON-C1 is an electronically-controlled pneumatic ventilation system with an integrated air compressing system. It runs on AC power with battery backup to protect against power failure or unstable power and to facilitate intra-hospital transport.

The user provides inputs to the HAMILTON-C1 microprocessor system through a touch screen, keys, and a press-and-turn knob. These inputs become instructions for the HAMILTON-C1’s pneumatics to deliver a precisely controlled gas mixture to the patient. The ventilator receives inputs from the proximal flow sensor and other sensors within the ventilator. Based on this monitored data, the ventilator adjusts gas delivery to the patient. Monitored data is also displayed by the graphical user interface.

The ventilator’s microprocessor system controls gas delivery and monitors the patient. The gas delivery and monitoring functions are cross-checked by an alarm controller. This cross-checking helps minimize the possible hazards of software failure.

A comprehensive system of visual and audible alarms helps ensure the patient’s safety. Clinical alarms can indicate an abnormal physiological condition. Technical alarms, triggered by the ventilator’s self-tests including ongoing background checks, can indicate a hardware or software failure. In the case of some technical alarms, a special safety ventilation ensures basic minute ventilation while giving the operator time for corrective actions.

When a condition is critical enough to possibly compromise safe ventilation, the HAMILTON-C1 is placed into the Ambient state. The inspiratory channel and expiratory valves are opened, letting the patient inspire room air through the inspiratory channel and exhale through the expiratory valve.

The HAMILTON-C1 has several means to ensure that safe patient or respiratory pressures are maintained. The maximum working pressure is ensured by the high pressure alarm limit. If the set high pressure limit is reached, the ventilator cycles into exhalation. The ventilator pressure cannot exceed 60 cmH2O.

15.13.1 Gas supply and delivery

The HAMILTON-C1 uses room air and high- or low-pressure oxygen (Figure 15-5). The use of medical oxygen is mandatory. Air enters through a fresh gas intake port and is compressed together with the oxygen by the blower. Oxygen enters through a high\(^{165}\)- or low\(^{166}\)-pressure inlet.

Figure 15-5. Gas delivery in the HAMILTON-C1

\(^{165}\) High-pressure oxygen: Maximum allowed pressure is 600 kPa.
\(^{166}\) Low-pressure oxygen: Maximum allowed pressure is 600 kPa, maximum allowed flow 60 l/min.
Within the ventilator, the gas enters the ventilator’s pneumatic system. If high-pressure oxygen is supplied, a mixer valve provides for the operator-set concentration. If low-pressure oxygen is supplied, the delivered oxygen concentration is determined by the flow of the oxygen source.

Gas is supplied to the patient through the blower. The microprocessor controls the speed of the blower and the length of time it runs to meet the user settings.

The ventilator delivers gas to the patient through the inspiratory limb breathing circuit parts, which may include one or more of the following: inspiratory filter, flex tubes, humidification system, water traps, Y-piece, and flow sensor. An internal pneumatic nebulizer supplies the nebulizer flow.

Gas exhaled by the patient passes through the expiratory limb breathing circuit parts, which includes one or more of the following: flex tubes, flow sensor, Y-piece, and expiratory valve set. Gas is vented through the expiratory valve housing such that no exhaled gas comes into contact with any internal components of the ventilator. The expiratory valve is heated to reduce the possibility of rainout in the expiratory limb.

Measurements taken at the flow sensor are used in the pressure, flow, and volume measurements.

The ventilator monitors the oxygen concentration of the gas to be delivered to the patient using a galvanic O2 sensor. The galvanic O2 sensor generates a voltage proportional to the partial pressure of oxygen in the delivered gas.

The operations of the blower and expiratory valve are coordinated to maintain system pressure levels.

15.13.2 Gas monitoring with the flow sensor

The HAMILTON-C1 accurately measures flow, volume, and pressure in the patient’s airway with the Hamilton Medical flow sensor. This proximal flow sensor lets the ventilator sense even weak patient breathing efforts. Between its highly sensitive flow trigger and fast response time, the ventilator helps minimize the patient’s work of breathing.

The flow sensor contains a thin membrane within the outer housing and has a pressure port on either side. The membrane allows bidirectional flow through its variable orifice.

The area of the orifice changes depending on the flow rate. It opens progressively as the flow increases, creating a pressure drop across the orifice. The pressure difference is measured by a high-precision differential pressure sensor inside the ventilator. The pressure difference varies with flow (relationship determined during flow sensor calibration), so the patient’s flow is determined from the pressure drop. The ventilator calculates volume from the flow measurements.

The flow sensor is highly accurate even in the presence of secretions, moisture, and nebulized medications. The ventilator flushes the sensing tubes with mixed gases (rinse flow) to prevent blockage.
15.14 Symbols used on device labels and packaging

Table 15-20. Symbols used on device, device labels, and packaging

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Power/Standby key]</td>
<td>Power/Standby key</td>
</tr>
<tr>
<td>![Female patient]</td>
<td>Female patient</td>
</tr>
<tr>
<td>![Male patient]</td>
<td>Male patient</td>
</tr>
<tr>
<td>![Neonatal patient]</td>
<td>Neonatal patient</td>
</tr>
<tr>
<td>![To patient inspiratory port]</td>
<td>To patient inspiratory port</td>
</tr>
<tr>
<td>![From patient expiratory port]</td>
<td>From patient expiratory port</td>
</tr>
<tr>
<td>![Alarm Off]</td>
<td>Alarm Off</td>
</tr>
<tr>
<td>![Medical Device]</td>
<td>Medical Device</td>
</tr>
<tr>
<td>![Manufacturer]</td>
<td>Manufacturer</td>
</tr>
<tr>
<td>![Date of manufacture]</td>
<td>Date of manufacture</td>
</tr>
<tr>
<td>![Refer to the operator’s manual for complete information.]</td>
<td>Refer to the operator’s manual for complete information.</td>
</tr>
<tr>
<td>![Symbol for “Caution”. Applied parts not protected against defibrillation.]</td>
<td>Symbol for “Caution”. Applied parts not protected against defibrillation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>![The TÜV NRTL mark with the indicators “C” and “US” means that the product complies with Canadian requirements and the requirements of US authorities for safety.]</td>
<td>The TÜV NRTL mark with the indicators “C” and “US” means that the product complies with Canadian requirements and the requirements of US authorities for safety.</td>
</tr>
<tr>
<td>![Serial number]</td>
<td>Serial number</td>
</tr>
<tr>
<td>![This way up at transport and storage]</td>
<td>This way up at transport and storage</td>
</tr>
<tr>
<td>![Fragile, handle with care at transport and storage]</td>
<td>Fragile, handle with care at transport and storage</td>
</tr>
<tr>
<td>![Keep dry at transport and storage]</td>
<td>Keep dry at transport and storage</td>
</tr>
<tr>
<td>![Temperature limitations at transport and storage]</td>
<td>Temperature limitations at transport and storage</td>
</tr>
<tr>
<td>![Humidity limitations at transport and storage]</td>
<td>Humidity limitations at transport and storage</td>
</tr>
<tr>
<td>![Atmospheric pressure limitations at transport and storage]</td>
<td>Atmospheric pressure limitations at transport and storage</td>
</tr>
<tr>
<td>![Stacking limitations at transport and storage]</td>
<td>Stacking limitations at transport and storage</td>
</tr>
</tbody>
</table>
Symbol | Definition
--- | ---
![Recyclable material] | Recyclable material

Symbol	Definition
![Mass] | Mass

Symbol	Definition
![Single use] | Single use

Autoclavable.

Autoclavable parts can be used inside an autoclave (for example, a steam autoclave) without damage. These parts withstand temperatures up to approximately 134°C. The correct way to reprocess autoclavable parts is described in the *Reprocessing Guide* provided by the manufacturer.

Parts that Hamilton Medical terms as *autoclavable* can undergo autoclaving with steam sterilization without damage.

Symbol	Definition
![Reusable] | Reusable.

A reusable part is a medical device or part of a medical device that can be reused if it undergoes some sort of reprocessing between use on different patients. The correct way to reprocess reusable parts is described in the *Reprocessing Guide* provided by the manufacturer.

Parts that Hamilton Medical terms as *reusable* cannot be autoclaved with steam sterilization.

### Symbol	Definition
![Type B applied part] | Type B applied part (classification of medical electrical equipment, type B, as specified by IEC 60601-1)

Symbol	Definition
![Type BF applied part] | Type BF applied part (classification of medical electrical equipment, type BF, as specified by IEC 60601-1)

Symbol	Definition
![Applicable to neonatal patient group] | Applicable to neonatal patient group

Symbol	Definition
![Applicable to pediatric patient group] | Applicable to pediatric patient group

Symbol	Definition
![Applicable to adult patient group] | Applicable to adult patient group

Symbol	Definition
![Applicable to neonatal/pediatric patient groups] | Applicable to neonatal/pediatric patient groups

Symbol	Definition
![Applicable to pediatric/adult patient groups] | Applicable to pediatric/adult patient groups

Symbol	Definition
![Applicable to all patient groups] | Applicable to all patient groups

Symbol	Definition
![Terminal for the connection of a potential equalization conductor] | Terminal for the connection of a potential equalization conductor.

Symbol	Definition
![Indicates the degree of protection against electric shock according to IEC 60601-1. Class II devices have double or reinforced insulation, as they have no provision for protective grounding] | Indicates the degree of protection against electric shock according to IEC 60601-1. Class II devices have double or reinforced insulation, as they have no provision for protective grounding.

Symbol	Definition
![Protected against dripping water and solid particles larger than 12.5 mm] | Protected against dripping water and solid particles larger than 12.5 mm.
### Symbol	Definition
IP22 | Protected against dripping water when the device is tilted to a maximum of 15 degrees, and from solid particles larger than 12.5 mm.

HAMILTON-C1 poses unacceptable risks to the patient, medical staff, or other persons within the MR environment.

Chinese RoHS

Authorized representative in the European Community/European Union

Federal Communications Commission (FCC) Licensing

Near Field Communication

The RCM (Regulatory Compliance Mark) indicates a device’s compliance with applicable ACMA (Australian Communications and Media Authority) technical standards for telecommunications, radio communications, or broadcasting equipment.

Japan only. Ministry of Internal Affairs and Communications Approval Label

15.15 Standards and approvals

The HAMILTON-C1 was developed in accordance with pertinent international standards and FDA guidelines.

Where standards are mentioned, the HAMILTON-C1 complies with the versions listed in Table 15-22.

The ventilator meets relevant parts of the following standards, listed in Table 15-21.

Table 15-21. Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60601-1</td>
<td>Medical electrical equipment, Part 1: General requirements for basic safety and essential performance. The device classification is: Class II, Type B applied part (ventilator breathing system, VBS), type BF applied part (CO2 sensor including CO2 module connector, and SpO2 sensor including SpO2 adapter), continuous operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60601-1-2</td>
<td>Medical electrical equipment - Part 1-2: General requirements for basic safety and essential performance.</td>
</tr>
<tr>
<td></td>
<td>• Collateral standard: Electromagnetic disturbances</td>
</tr>
<tr>
<td></td>
<td>• Requirements and tests</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>IEC 60601-1-10</td>
<td>Medical electrical equipment - Part 1-10: General requirements for basic safety and essential performance. Collateral Standard: Requirements for the development of physiologic closed-loop controllers</td>
</tr>
<tr>
<td>ISO 80601-2-12</td>
<td>Medical electrical equipment - Part 2-12: Particular requirements for the basic safety and essential performance of critical care ventilators</td>
</tr>
<tr>
<td>CAN/CSA-C22.2 No. 60601.1</td>
<td>Medical electrical equipment: General requirements for safety</td>
</tr>
<tr>
<td>ANSI/AAMI ES 60601-1</td>
<td>Medical electrical equipment - Part 1: General requirements for basic safety and essential performance</td>
</tr>
<tr>
<td>EN ISO 5356-1</td>
<td>Anaesthetic and respiratory equipment - conical connectors - Part 1: Cones and sockets</td>
</tr>
<tr>
<td>EN ISO 5359</td>
<td>Low-pressure hose assemblies for use with medical gases</td>
</tr>
<tr>
<td>EN ISO 80601-2-55</td>
<td>Medical electrical equipment - Part 2-55: Particular requirements for the basic safety and essential performance of respiratory gas monitors</td>
</tr>
</tbody>
</table>

Table 15-22. Standards and approvals, valid versions

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA-C22.2 No. 60601-1:14</td>
<td></td>
</tr>
<tr>
<td>IEC 60601-1-2:2014</td>
<td></td>
</tr>
<tr>
<td>ISO 80601-2-12:2011 + Cor.:2011</td>
<td></td>
</tr>
<tr>
<td>ISO 80601-2-55:2018</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-3-2:2005</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-3-3:2008</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-2:2008</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-4:2004</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-5:2005</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-8:2009</td>
<td></td>
</tr>
<tr>
<td>IEC 61000-4-11:2004</td>
<td></td>
</tr>
<tr>
<td>EN ISO 13485:2016</td>
<td></td>
</tr>
<tr>
<td>IEC 60950-1:2013</td>
<td></td>
</tr>
<tr>
<td>ISO 15883-2:2006</td>
<td></td>
</tr>
<tr>
<td>ISO 15883-3:2006</td>
<td></td>
</tr>
<tr>
<td>ISO 15883-4:2008</td>
<td></td>
</tr>
<tr>
<td>ISO 11607-1:2006 + AMD1:2014</td>
<td></td>
</tr>
<tr>
<td>EN ISO 9001:2008</td>
<td></td>
</tr>
<tr>
<td>EN ISO 5356-1:2015</td>
<td></td>
</tr>
<tr>
<td>ISO 4135:2001</td>
<td></td>
</tr>
</tbody>
</table>
15.16 Disposal and year of manufacture

Disposal

The device must be disposed of according to your institution’s protocols and Directive 2002/96/EC.

All parts removed from the device must be considered contaminated, and pose infection risk.

Dispose of all parts removed from the device according to your institution’s protocol. Follow all local, state, and federal regulations with respect to environmental protection, especially when disposing of the electronic device or parts of it (for example, O2 sensor, batteries).

Year of manufacture

The year of manufacture is shown on the serial number label on the HAMILTON-C1 ventilation unit.

15.17 Warranty

LIMITED WARRANTY

THE WARRANTY DESCRIBED IN THIS AGREEMENT IS IN LIEU OF ANY AND ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HOWEVER, IMPLIED WARRANTIES ARE NOT DISCLAIMED DURING THE PERIOD OF THIS LIMITED WARRANTY.

Hamilton Medical guarantees its products to be shipped free from defects in material and workmanship.

The warranty does not include disposable items. Disposable items and consumable products are considered to be of single use or of limited use only and must be replaced regularly as required for proper operation of the product following the operator’s manual.

Hamilton Medical shall have no obligations nor liabilities in connection with the product other than what is specified herein, including without limitation, obligations and/ or liabilities for alleged negligence, or for strict liability.

In no event shall the company be liable for incidental or consequential damages, either direct or contingent.
This Limited Warranty shall be void and not apply:

1. If the product has not been installed and connected by an authorized local representative of Hamilton Medical in accordance with the instructions furnished by Hamilton Medical and by a Hamilton Medical representative.

2. If replacements and/or repairs have not been performed by authorized or properly trained personnel.

3. If no evidence is present that the occurrence of damage/repair happened within the certified warranty period.

4. If the serial number has been altered, effaced or removed and there is no bill of sale or evidence to verify the product’s purchase date.

5. If the defects arise from misuse, negligence, or accidents or from repair, adjustment, modification or replacement made outside Hamilton Medical’s factories or other than an authorized service center or authorized service representative.

6. If the product has been modified, or in any nature altered without prior written authorization from Hamilton Medical.

7. If yearly maintenance is not performed.

8. If the product is or has been used in any way that is not specified under “Intended Use” (see “General cautions and notes”).

9. If the product has been used by anyone but properly trained personnel under the supervision of a physician. Replacements and/or repairs furnished under this Limited Warranty do not carry a new warranty, but carry only the unexpired portion of the original Limited Warranty. The warranty of repaired and/or replaced components does not exceed the Limited Warranty of the device.

To obtain service under this Limited Warranty, claimant must promptly notify the country’s sales partner of Hamilton Medical regarding the nature of the problem, serial number and the date of purchase of the Product.

Except as stated above, Hamilton Medical shall not be liable for any damages, claims or liabilities including, but not limited to, personal bodily injury, or incidental, consequential, or special damages. Nor will Hamilton Medical be liable for any damages, claims or liabilities including, but not limited to, personal bodily injury, or incidental, consequential, or special damages resulting from misuse of the device or failure to comply with any of the provisions made in this manual.

The general terms and conditions of Hamilton Medical shall be applicable. This agreement shall be governed by and construed in accordance with the laws of Switzerland and may be enforced by either party under the jurisdiction of the court of Chur, Switzerland.
(S)CMV+
See APVcmv

alarm lamp
Lamp on top of the ventilator that lights in the color corresponding to the active alarm

Alarm Off symbol
Displayed when the associated alarm limit is disabled (set to Off)

apnea
Cessation of breathing

APRV
Airway pressure release ventilation, a ventilation mode

APVcmv
Adaptive pressure ventilation with controlled mandatory ventilation, a ventilation mode; can also be shown as (S)CMV+ (configurable)

APVsimv
Adaptive pressure ventilation with synchronized intermittent mandatory ventilation, a ventilation mode; can also be shown as SIMV+ (configurable)

ASV
Adaptive support ventilation mode. ASV adjusts pressure and rate on a breath-by-breath basis, taking into account changing patient conditions and applying lung-protective strategies to meet the targets.

ASV Graph
An Intelligent panel that shows ASV target and patient data graphically, available in ASV mode

AutoPEEP
Unintended positive end-expiratory pressure, a monitored parameter

backup
Apnea backup ventilation

backup buzzer
A buzzer that sounds for at least 2 minutes in certain conditions; also functions as a backup for the ventilator loudspeaker

base flow
A continuous and constant gas flow from the inspiratory outlet to the expiratory outlet

breathing circuit
Breathing limbs and components used to deliver respiratory gases to the patient

BTPS
Body temperature, barometric pressure at sea level, saturated with water vapor

CE
A certification mark that indicates compliance with the Medical Device Directive, 93/42/EEC

ccontrol
A virtual dial, slider or other input icon on the display that allows you to specify the value of a setting

ccontrol setting, control parameter
Any setting that the ventilator uses as an input for the delivered ventilation therapy. For example, PEEP/CPAP, IBW, or Weight, Vt, and so on. Note that some control settings, such as IBW, are not directly specified by the user.

CPR timer
Displayed as an MMP during CPR ventilation, shows how long CPR ventilation has been on
CPR ventilation
CPR ventilation allows you to continue respiration during the administration of cardiopulmonary resuscitation.

CSA
Canadian Standards Association

Cstat
Static compliance, a monitored parameter

Driving pressure (ΔP)
A calculated value showing the ratio of tidal volume to static compliance, which reflects the difference between Pplateau and PEEP total; can provide information to help optimize ventilation for ARDS patients

DuoPAP
Duo positive airway pressure, a ventilation mode

Dynamic Lung
Intelligent panel that graphically represents tidal volume, lung compliance, patient triggering, and resistance in real time

EMC
Electromagnetic compatibility

EMI
Electromagnetic interference

EN
European norm, a European standard

ETS
Expiratory trigger sensitivity is the percent of peak inspiratory flow at which the ventilator cycles from inspiration to exhalation. Increasing the ETS setting results in a shorter inspiratory time. The ETS setting lets you match the inspiratory time of pressure-supported breaths to the patient’s neural timing.

event log
A record of clinically relevant ventilator occurrences, including alarms, settings changes, calibrations, maneuvers, and special function uses that have occurred since the ventilator was turned on

Exp Flow
Peak expiratory flow, a monitored parameter

ExpMinVol
Expiratory minute volume, a monitored parameter and alarm setting; in the Vent Status panel, ExpMinVol is the percentage of normal minute ventilation based on IBW

fControl
Mandatory breath frequency, a monitored parameter

FDA
United States Food and Drug Administration

FetCO2
Fractional end-tidal CO2 concentration, a monitored parameter

Flow (in nCPAP/nCPAP-PC)
In the neonatal nCPAP and nCPAP-PC modes, monitored parameter that measures and displays the current flow; the upper (high) limit is controlled by the Flow alarm

fSpont
Spontaneous breathing frequency, a monitored parameter

fTotal
Total breathing frequency, a monitored parameter and alarm setting
HEPA
High efficiency particle air filter

HiFlowO2
High flow oxygen therapy

HME, HMEF
Heat and moisture exchanger (artificial nose), heat and moisture exchanging filter

HPO
High-pressure oxygen

I:E
Ratio of inspiratory time to expiratory time, a setting, timing parameter, and monitored parameter

IBW
Ideal body weight, a calculated value for adult and pediatric patients based on the patient’s sex and height; used as the basis for initial settings of various parameters

ID
Inner diameter

IEC
International Electrotechnical Commission

Insp Flow
Peak inspiratory flow, a monitored parameter

inspiratory pressure
The total inspiratory pressure to be applied during ventilation. In some modes this is the sum of the pressure control + PEEP/CPAP

IntelliTrig
Intelligent trigger, a feature that ensures that the set trigger sensitivity can trigger a breath independent from leakage and breath pattern

IRV
Inverse ratio ventilation: the set expiratory time is less than the inspiratory time

ISO
International Organization for Standardization

loudness
Sets the volume for the audible ventilator alarms

LPO
Low-pressure oxygen

LSF
Least squares fitting method; a mathematical procedure for finding the best fitting curve for a given set of points by minimizing the sum of the squares of the offsets of the points from the curve

mandatory breath
The start of inspiration (triggering) is determined by the ventilator or the patient. The end of inspiration (cycling) is determined by the ventilator.

manual breath
A user-triggered mandatory breath started by pressing the Manual breath key
MinVol
Minute volume, a calculated and monitored parameter used in ASV mode; based on the operator-set %MinVol, the ventilator calculates the target MinVol in l/min, then measures and displays this value in the ASV Graph

MVLeak
Total minute volume leakage; MVLeak shows VLeak * frequency (respiratory rate)

MVSpont
Spontaneous expiratory minute volume, a monitored parameter

nCPAP
Neonatal-only ventilation mode that applies CPAP over a nasal interface (mask or prongs)

nCPAP-PC
Neonatal-only ventilation mode that delivers, in addition to the set CPAP, intermittent, time-cycled, and pressure-controlled breaths

NIST
Noninterchangeable screw thread, a standard for high-pressure gas inlet fittings

NIV
Noninvasive ventilation, a ventilation mode

NIV-ST
Spontaneous/timed noninvasive ventilation, a ventilation mode

NPPV
Noninvasive positive pressure ventilation

OD
Outer diameter

Oxygen
Oxygen concentration of the delivered gas, a control setting and a monitored parameter

P high
High pressure in APRV and DuoPAP modes

P low
Low pressure setting in APRV mode

P0.1
Airway occlusion pressure, a monitored parameter

Pat. height
Patient height; a control setting used to compute the patient’s ideal body weight (IBW) in calculations for ASV and startup settings

patient group
A control setting used to define initial startup settings for the patient; options are Adult/Ped (adult and pediatric patients) and Neonatal

PCV+
Pressure controlled ventilation, a ventilation mode

PEEP/CPAP
PEEP (positive end-expiratory pressure) and CPAP (continuous positive airway pressure), a control setting and monitored parameter; PEEP and CPAP are constant pressures applied during both the inspiratory and expiratory phases

PetCO2
Partial pressure of end-tidal CO2, the measure of CO2 present in the exhaled air

P limit
Maximum pressure to apply during ventilation, a control setting
Pmean
Mean airway pressure, a monitored parameter

PN
Part number

Ppeak
Peak airway pressure, a monitored parameter

Pplateau
Plateau or end-inspiratory pressure

P-ramp
Pressure ramp, a control setting

Pressure control
Maintenance of a consistent transrespiratory pressure waveform despite changing respiratory system mechanics

PSIMV+
Pressure-controlled synchronized intermittent mandatory ventilation, a ventilation mode

PTP
Inspiratory pressure time product, a monitored parameter

Rate
Breath frequency or number of breaths per minute, a control setting

RCexp
Expiratory time constant, a monitored parameter

Rinsp
Inspiratory flow resistance, a monitored parameter

RSB
Rapid shallow breathing index, a monitored parameter

Sex
Sex of patient, a control setting

sigh
Breaths delivered to deliberately increase tidal volume at a regular interval. If enabled, a sigh breath with an additional 10 cmH2O is delivered every 50 breaths. Note that in volume-controlled modes, a sigh breath delivering 150% of the set tidal volume is delivered every 50 breaths.

SIMV+
See APVsimv

slopeCO2
Slope of the alveolar plateau in the PetCO2 curve, a monitored parameter

SPONT
Spontaneous (pressure support) mode of ventilation, a ventilation mode

spontaneous breath
A breath for which both the inspiratory and expiratory triggers are controlled by the patient; the patient both triggers and cycles the breath

Standby
The ventilator is in a waiting state; there is no breath delivery

STPD
Standard temperature and pressure, dry; defined as dry gas at 0°C (32°F) at 758 mmHg (101 kPa) pressure at sea level

T high
Set time interval for the high pressure level in the APRV and DuoPAP modes

T humidifier
Measured temperature at the humidifier water chamber exit, a monitored parameter (for HAMILTON-H900 humidifier only)
T low
Set time interval for the low pressure level in APRV mode

T Y-piece
Measured temperature at the humidifier Y-piece, a monitored parameter (for HAMILTON-H900 humidifier only)

TE
Expiratory time, a monitored parameter

technical fault
A type of alarm generated when the ventilator’s ability to safely ventilate the patient may be at risk

TI
Inspiratory time, a control setting and monitored parameter

TI max
Maximum inspiratory time, a control setting

touch screen
The glass portion of the monitor that you touch to interact with the display elements

Trends
Trend data for a selected parameter or group of parameters includes all of that parameter’s data values since the ventilator was turned on for the past selectable period of time

V’alv
Alveolar minute ventilation, a monitored parameter

V’CO2
Net exhaled volume of CO2, a monitored parameter

VDaw
Airway dead space

VDaw/VTE
Airway dead space fraction at the airway opening, a monitored parameter

VeCO2
Expiratory CO2 volume, a monitored parameter

Vent Status panel
An Intelligent Panel that illustrates six parameters related to the patient’s ventilator dependence, including oxygenation and patient activity

ventilator breathing system (VBS)
A breathing system bounded by the low-pressure gas input port(s), the gas intake port(s), and the patient connection port, together with the fresh-gas inlet and exhaust port(s), if fresh-gas inlet or exhaust ports are provided, as described in ISO 4135

ViCO2
Inspiratory CO2 volume, a monitored parameter

VLeak
Leakage percent, a monitored parameter

Vt
Tidal volume; a control setting, alarm setting, and monitored parameter

Vt/IBW
Tidal volume calculated according to ideal body weight, used for adult/pediatric patients; a monitored parameter

Vt/Weight
Tidal volume calculated according to actual body weight, used for neonatal patients; a monitored parameter

Vtalv
Alveolar tidal ventilation, a monitored parameter
VTE
Expiratory tidal volume, a monitored parameter; it is the integral of all negative flow measurements during exhalation

VTESpont
Spontaneous expiratory tidal volume, a monitored parameter

VTI
Inspiratory tidal volume, a monitored parameter

ΔPcontrol
Pressure control, a control setting in PCV+ and PSIMV+ modes; pressure (additional to PEEP/CPAP) to be applied during the inspiratory phase

ΔPinsp
Inspiratory pressure, the target pressure (additional to PEEP/CPAP) to be applied during the inspiratory phase. Set by the operator in the PSIMV +PSync and NIV-ST modes; displayed in the Vent Status panel and the ASV Graph.

ΔPsupport
Pressure support, a control setting valid during spontaneous breaths in SPONT, APVsimv, PSIMV+PSync, DuoPAP, and NIV modes. ΔPsupport is pressure (additional to PEEP/CPAP) to be applied during the inspiratory phase.
Index

Icons

%MinVol parameter 108
(S)CMV+ / APVcmv ventilation mode 126
ΔPcontrol parameter 111
ΔPinsp parameter 111, 172
ΔPsupport parameter 111

A

accessories, list of 264
air/dust filters, replacing 249
alarm test, about 95
alarms
about 182
active, viewing 186
Audio pause, enabling 186
buffer, about 186
HAMILTON-H900 humidifier 235
i-icon (alarm buffer) 187
inactive, viewing 186
indicators, about 182
limit disabled symbol 185
limits, setting 101
limits, where shown 185
list of 188
loudness, setting 188
on-screen help, accessing 187
responding to 185
shortcut to alarm buffer 54
silencing (Audio pause) 186
troubleshooting 188
alarms, adjustable
about 102
Apnea time 103
ExpMinVol 103
Flow (nCPAP, nCPAP-PC only) 103
fTotal 103
limits, setting 102
Oxygen 103
PetCO2 103
Pressure 104
Vt 104
Ambient state 144
Apnea backup 100, 108
Apnea time alarm 103
APRV ventilation mode 133

APVcmv / (S)CMV+ ventilation mode 126
APVsimv / SIMV+ ventilation mode 127
ASV Graph
about 170
displaying 170
ASV ventilation mode 135
functional overview 153
maintaining adequate ventilation 150
monitoring ventilation 151
weaning, overview 152
working with 148
Audio pause (alarm silence)
alarms not affected 185
enabling/canceling 186
AutoPEEP parameter 172

B

batteries
about 57
power states, about 57
remaining charge/time, shortcut 54
status indicator on ventilator 58
storage 250
Bluetooth
enabling on ventilator 239
Bluetooth, connecting with 240
breath timing options 122
selecting 254
breath types 122
breathing circuit diagrams (Adult/Ped)
coaxial with HMEF 47
dual limb with humidifier 47
high flow oxygen 48
breathing circuit diagrams (Neo)
high flow oxygen therapy 50
nCPAP, nCPAP-PC 51
with HMEF 49
with humidifier 49
breathing circuits
connection overview 66
expiratory valve, installing 67
filters, using in 68
flow sensor, connecting 69, 70
key connection ports on ventilator 66
positioning 70, 117
pressure line, connecting 116
selecting components for (Adult/Ped) 68
selecting components for (Neo) 115
speaking valve compatibility 69

calibration
 breathing circuit (pressure line) 119
 CO2 sensor/adapter 94
 flow sensor 91, 118
 O2 sensor 93
Tests & calibs window, accessing 89
Check flow sensor for water alarm 192
 cleaning components and ventilator agents for touch screen 247
 cleaning agents 246
 general guidelines 244
CO2 alarms 103, 291
CO2 measurement
 activating option 261
 CO2-related parameters 178
 enabling 79
 mainstream monitoring, about 75
 overview 75
 sidestream monitoring, about 77
 zero calibration, performing 94
communication (COM) interface, selecting 252
configuration
 alarm loudness, setting minimum 253
 breath timing options, selecting 254
 CO2, activating option 261
 communication (COM interface, selecting) 252
Configuration mode, accessing 252
 copying configuration settings to other devices 260
flow sensor water sensitivity, setting 253
hardware options, activating/deactivating 261, 262
language, selecting 252
MMPs, selecting what to show 254
mode naming, selecting 254
options, reviewing installed 260
Quick setups, defining 255
software options, activating 260
software options, removing 261
SpO2, activating option 261

 TI max, enabling for invasive modes 254
 units of measure, selecting 252
 configuration file
 exporting 258
 importing 258
 overview 258
connection types
 enabling 239
Connectivity window, accessing 239
control parameters
 adjusting 52
 defined 107
 settings, changing 53, 211
Controls window 97
 opening 97
 settings for ventilation, adjusting 97
CPR on alarm 195
CPR Timer parameter 176
CPR ventilation
 about 219
 CPR-related alarms 221
 default mode in 219
 display, about 219
 features of 220
 modes and settings 219
 working with 220
Cstat parameter 176
 in Dynamic Lung 167

data connections, supported types 239
data transfer, copying configuration settings 260
date/time
 setting 222
 shortcut to settings window 54
device information, viewing 180
discharging components, guidelines for 244
display
 brightness, setting 223
 navigating 52
 shortcuts, using 54
documentation
 conventions used in manual 18
 manuals for ventilator, list of 17
Driving pressure (ΔP) parameter 172
DuoPAP ventilation mode 132
Dynamic Lung
about 166
airway resistance (Rinsp) 167
compliance (Cstat) 167
displaying 168
patient trigger 168
SpO2 data 168

EMC-related safety information 22
etCO2. see PetCO2 178
Ethernet
enabling on ventilator 239
Ethernet, connecting with 242
ETS parameter 108
event log
about 224
copying 225
viewing 224
Exp Flow parameter 173
expiratory valve, installing 67
ExpMinVol parameter 174

fControl parameter 175
FetCO2 parameter 178
filters, using in breathing circuit 68
firmware, updating for connectivity 257
flow alarms 103, 291
Flow parameter 108, 173
flow sensor
 calibration 91, 118
 connecting 69, 70
 connecting (Neo) 116
 water sensitivity (Neo), setting 253
Flow trigger parameter 108
flow-related parameters 173
fSpont parameter 175
fTotal parameter 175
function keys on front of ventilator, about 211

gas source
selecting HPO/LPO 59
gas source. See gas supply 59
gas supply
connecting 58
functional description of 308
LPO, connecting 58
LPO, overview 58
selecting HPO/LPO 59

graphics on display
Intelligent panels, about 166
loops 165
trends 163
types of 160
waveform view options 161

Hamilton Connect Module
configuration file, overview 258
deleting pairing info 259
deleting saved data from 259
firmware update 257
overview 257
reset factory defaults 259

Hamilton Medical College website 18
HAMILTON-C1 neo option, about 38
hardware options, reviewing installed 260
HEPA filter, replacing 249
HiFlowO2
about 215
working with 215
high flow oxygen
breathing circuit diagrams (Adult/Ped) 48
breathing circuit diagrams (Neo) 50
humidifier
connecting 74
setup overview 74
humidifier (HAMILTON-H900)
adjustable controls, about 232
alarms 234, 235
connecting to ventilator 74
connection to ventilator, verifying 230
controls on ventilator, accessing 228
data, where displayed 237
integration with ventilator, about 228
parameters, list of 237
quick access button, about 230
settings, changing 233
Standby, entering 233
turning on/off 233
window shortcut 54
humidifier alarms (HAMILTON-H900)
alarm sound, pausing (silencing) 234
list of 235
status indicators, about 230
troubleshooting 235
where/how displayed 234
humidifier modes and controls (HAMILTON-H900)
Auto/Manual control modes 231
HAMILTON-H900 parameter 237
humidifier operating modes, about 231
Invasive, NIV, HiFlowO2 230
Set temp parameter 232
T gradient parameter 232
T humidifier parameter 237
T Y-piece parameter 237

I
I:E parameter 108, 175
IBW parameter 108
i-icon (alarm buffer), about 187
Insp Flow parameter 173
Intelligent panels
about 166
ASV Graph 170
Dynamic Lung 166
types of 160
Vent Status 168

K
keys on front of ventilator, about 211

L
language, setting 252
leak alarms 103, 291
Leak parameter 174
Leak test, performing 90
list items, selecting 53
loops
about 165
displaying 165
storing 165
types of 160
loudness, setting for alarms 188
LPO (low-pressure oxygen)
connecting 58
overview 58
selecting gas source 59

M
main monitoring parameters (MMPs)
selecting what to show 254
shortcut to Alarms Limits window 54
viewing 158
mainstream CO2 measurement
about 75
setting up 76
maintenance
air/dust filters, replacing 249
battery, storage 250
HEPA filter, replacing 249
preventive 248
manual breath, delivering 215
MinVol NIV parameter 174
modes
accessing shortcut 54
naming convention, selecting 254
monitored parameters
defined 172
specifications for 285
monitoring ventilation
about 158
main monitoring parameters (MMPs) 158
parameter values, viewing graphically 160
parameter values, viewing numerically 158
MVLeak parameter 174
MVSpont NIV parameter 174
MVSpont parameter 174
N

navigating the display 52
nCPAP ventilation mode 140, 141
nCPAP/nCPAP-PC breathing circuit diagram 51
nCPAP-PC ventilation mode 140, 142
nebulizer
 pneumatic, setting up 80
 setting up 80
 starting/stopping 216
 using 216
neo option, about 38
neonatal ventilation
 breathing circuit diagrams 49, 50, 51
 breathing circuit, setting up 115
 flow sensor, connecting 116
 patient data, entering 114
 preoperational check, overview 117
 setting up for 114
NIV ventilation mode 138
NIV-ST ventilation mode 139
noninvasive (NIV) ventilation
 alarms during 146
 conditions for use 145
 contraindications for use 145
 notes for use 147
 working with 145

O

O2 enrichment, delivering 213
O2 sensor
 calibrating 93
 enabling 79
options
 hardware, activating/deactivating 261, 262
 removing software 261
oxygen alarms 103, 291
Oxygen parameter 108, 176
 alarm 105
 oxygen supply, connecting 58

P

P high parameter 109
P low parameter 109
P0.1 parameter 176
paired device info, deleting from Hamilton Connect Module 259
parameters, monitored
 CPR Timer 176
parameters, specifications for control 281
parameters, specifications for monitored 285
parts, list of 264
Pat. height parameter 109
patient data
 changing 210
 entering 88
 main monitoring parameters (MMPs) 158
 overview of 158
 viewing graphically 160
 viewing numeric data 158
patient setup
 entering patient data 86, 114
 overview of 86
 Quick setups, about 87
Paw (pressure/time) waveform, about 161
Pcontrol. See ΔPcontrol. 111
PCV+ ventilation mode 129
PEEP/CPAP parameter 109, 172
PetCO2 parameter 178
Pinsp. See ΔPinsp. 111
Plimit parameter 109
Plimit, working with the control 98
Pmean parameter 173
power supply
 batteries, about 57
 power states, about 57
 primary power, connecting to 56
Ppeak parameter 173
Pplateau parameter 173
Pprox parameter 173
P-ramp parameter 109
preconfigured settings (Quick setups), about 87
preoperational check
flow sensor calibration, performing 91, 118
Leak test, performing 90
overview 88, 90
overview, neonatal 117
performing 89, 117
test breathing circuit setup (adult/pediatric) 89
test breathing circuit setup (Neo) 117
testing alarms 95
Tests & calibs window, accessing 89
preparing for ventilation, overview 56
pressure alarms 103, 291
pressure line, connecting 116
pressure-control settings, working with 98
pressure-related parameters 172
PSIMV + PSync ventilation mode 131
PSIMV+ ventilation mode 130
Psupport. See ΔPsupport. 111
PTP parameter 177
Pulse oximetry, about 79

Q
Quick setups
about 87
defining new or editing existing 255

R
rate alarms 103, 291
Rate parameter 110
RCexp parameter 177
regulatory standards, compliance with 22, 313
Resource Center website 18
Rinsp parameter 178
in Dynamic Lung 167
RSB parameter 178

S
safety information 22
alarms 33
apnea backup 32
breathing circuits and accessories 27
CO2 sensors 29
electrical 25
EMC 22
fire/hazards 23
gas supply 25
general operation and setup 23
humidifiers 28
maintenance and cleaning/disinfection 34
maintenance, cleaning/disinfection 34
monitoring 33
nebulization 30
neonatal ventilation 31
noninvasive ventilation 33
O2 sensor 36
patient settings 31
power and batteries 25
preoperational checks 28
preventive maintenance 35
service and testing 36
trolley 34
USB port 26
Safety ventilation, about 143
screenshot of display, capturing 222
sensors, enabling 79
setting up for ventilation, overview 56
Setups button, Configuration 255
Sex parameter 110
shortcuts on display
using 54
sidestream CO2 measurement
about 77
setting up 78
Sigh parameter 110
SIMV+ / APVsimm ventilation mode 127
slopeCO2 parameter 179
software options
activating on ventilator 260
removing 261
reviewing installed 260
software version, viewing 180
speaking valve
about 81
activating 81
compatibility 69
connecting to breathing circuit 82
deactivating 82
specifications
accuracy testing 306
adjustable alarms 291
ASV technical data 297
breathing system 299
configuration 294
dimensions 274
disposal 315
electrical 277
environmental 275
essential performance 306
functional description of system 308
gas monitoring description 309
gas supply/delivery description 308
monitored parameters 285
pneumatic 276
pneumatic diagram 310
standards/approvals 313
symbols used on labels 313
technical performance data 300
year of disposal 315
SpO2 measurement
about 79
activating option 261
data displayed in Dynamic Lung 168
enabling 79
SPONT ventilation mode 134
Standby
entering 107
entering/exiting 106, 212
starting/stopping ventilation 106, 107
suctioning, performing 213
System Info window, viewing device info 180

time scale of waveforms, changing 162
time/date, setting 222
time-related parameters 175
touch screen
 cleaning agents for 247
touch screen, locking/unlocking 221
transfer configuration settings 260
transport, preparing trolley for 52
trends
 about 163
displaying 164
freezing 163
trolley, preparing for intrahospital transport 52
troubleshooting
 alarms 188
 CO2 sensor zero calibration failure 95
 flow sensor calibration failure 92
 HAMILTON-H900 humidifier alarms 235
 Leak test failure 91
 O2 sensor calibration 94
 turning the ventilator on/off 71

V
V’alv parameter 179
V’CO2 parameter 179
VDaw parameter 179
VDaw/VTE parameter 179
VeCO2 parameter 179
Vent Status panel
 about 168
displaying 170
weaning zone, configuring 256
ventilation
 alarms, working with 182
 changing patient data during 210
 control parameters, defined 107
 monitored parameters, list of 171
 monitoring, overview 158
 neonatal, setting up for 114
 preparing for, overview 56
 settings, changing 211
 Standby, entering/exiting 106, 212
 starting/stopping 106, 107

T
T high parameter 110
T low parameter 110
TE parameter 175
TI max parameter 111
 enabling for invasive modes 254
 TI parameter 110, 175
ventilation modes
ASV, working with 148
c control settings, adjusting 97
modes, list of 123
noninvasive ventilation, working with 145
overview 122
selecting 96
ventilation modes, list of
Ambient state 144
APRV 133
APVcmv 126
APVsimm (SIMV+) 127
ASV 135
DuoPAP 132
nCPAP 141
nCPAP-PC 142
NIV 138
NIV-ST 139
PCV+ 129
PSIMV+ 130
PSIMV+PSync 131
Safety ventilation 143
SPONT 134
ventilation parameters
control settings 107
monitored 172
specifications for control 281
specifications for monitored 285
ventilation settings
entering patient data 86, 114
how to adjust 53
preconfigured settings (Quick setup), about 87
Ventilation time parameter 178
ventilation timer
about 180
resetting 180
ventilator
cleaning agents for 246
controls, how to use 53
features/options, overview of 38, 39
front view 42
hardware options, overview of 40
intended use 19
navigating the display 52
patient setup, overview 86
rear view 43
side view (gas connections) 45
side view (patient ports) 44
turning on/off 71
ViCO2 parameter 179
VLeak parameter 174
volume alarms 103, 291
volume-related parameters 174
Vt parameter 111
Vt/IBW parameter 175
Vt/kg parameter 111
Vt/Weight parameter 175
Vtalv parameter 179
VTE NIV parameter 174
VTE parameter 174
VTESpont parameter 174
VTI parameter 175

W
warranty 315
waveforms
display options 161
displaying 162
freezing 163
Pressure/time (Paw), about 161
time scale, changing 162
types of 160
Weight parameter 111
Wi-Fi
connecting to 241
Wi-Fi access point
connecting to 240
enabling on ventilator 239
wireless communication
Bluetooth, connecting with 240
shortcut to Communications window 54
Wi-Fi Access Point, connecting to 240
Wi-Fi, connecting to 241
wireless connection
enabling 239
Wireless LAN (Wi-Fi)
enabling on ventilator 239

Z
zero calibration
performing for CO2 sensor/adapter 94