Lung recruitment

This bibliography is a literature reference for users and represents selected relevant publications, without any claim to completeness.

Table of Contents

1 Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial .. 3
2 Open lung approach for the acute respiratory distress syndrome: A pilot, randomized controlled trial 4
3 How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography.. 5
4 Optimal duration of a sustained inflation recruitment maneuver in ARDS patients............................. 6
5 Prone position and recruitment manoeuvre: the combined effect improves oxygenation 7
6 Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndromes using low tidal volume ventilation: a multicentre randomized controlled clinical trial 8
7 A recruitment maneuver increases oxygenation after intubation of hypoxemic intensive care unit patients: a randomized controlled study.. 9
8 Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome 10
9 Lung recruitment in patients with the acute respiratory distress syndrome.. 11
10 Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury ... 12
11 Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy .. 13
12 Recruitment maneuvers: using transpulmonary pressure to help Goldilocks...................................... 14
13 Impact of recruitment on static and dynamic lung strain in acute respiratory distress syndrome.......... 15
14 Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome ... 16
15 Sigh in supine and prone position during acute respiratory distress syndrome 16
16 Opening pressures and atelectrauma in acute respiratory distress syndrome..................................... 17
17 A positive response to a recruitment maneuver with PEEP titration in patients with ARDS, regardless of transient oxygen desaturation during the maneuver... 18
18 Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure .. 19
19 Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography... 20
20 Dynamics of end expiratory lung volume after changing positive end-expiratory pressure in acute respiratory distress syndrome patients... 21
21 Acute physiologic effects of a stepwise recruitment maneuver in acute respiratory distress syndrome. 21
22 Acute hemodynamic effects of recruitment maneuvers in patients with acute respiratory distress syndrome
23 Intercomparison of recruitment maneuver efficacy in three models of acute lung injury
24 Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study
25 The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients
26 Comparison of 2 lung recruitment strategies in children with acute lung injury
27 Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study
28 Recruitment maneuvers and PEEP titration
29 Lung recruitment in acute respiratory distress syndrome: what is the best strategy?
30 Recruitment maneuvers for acute lung injury: a systematic review
Effect of intensive vs moderate alveolar recruitment strategies added to lung-protective ventilation on postoperative pulmonary complications: a randomized clinical trial

JAMA. 2017 Apr 11;317(14):1422-1432

Design
Prospective randomized trial: intensive (high-pressure recruitment maneuver and PEEP = 13 cmH2O) or moderate (low-pressure recruitment maneuver and PEEP = 8 cmH2O) recruitment strategy

Patients
320 hypoxemic patients after cardiac surgery

Objectives
Assess the effect of an intensive alveolar recruitment strategy on postoperative pulmonary complications in patients receiving lung-protective ventilation with small tidal volumes

Main Results
The intensive recruitment strategy group had a mean 1.8 (1.7-2.0) and a median 1.7 (1.0-2.0) pulmonary complications score versus 2.1 (2.0-2.3) and 2.0 (1.5-3.0) for the moderate strategy group. The mean hospital stay for the intensive group was 10.9 days versus 12.4 days in the moderate group (p = 0.04). The mean ICU stay for the intensive group was 3.8 days versus 4.8 days for the moderate group (p = 0.01). Hospital mortality was 2.5% in the intensive group versus 4.9% in the moderate group (p > 0.05).

Conclusion
Among patients with hypoxemia after cardiac surgery, the use of an intensive alveolar recruitment strategy resulted in fewer severe pulmonary complications than a moderate recruitment strategy.

Comment
This study assesses the effect of an intensive recruitment strategy on complications in post-cardiac surgery patients

Figure 1: The severity and occurrence of postoperative pulmonary complications were reduced by use of an intensive recruitment strategy.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Intensive recruitment strategy (n=157)</th>
<th>Moderate recruitment strategy (n=163)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0 (no symptoms)</td>
<td>55</td>
<td>41</td>
</tr>
<tr>
<td>Grade 1</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td>Grade 2</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Grade 3</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Grade 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 5 (death)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patients, %
Open lung approach for the acute respiratory distress syndrome: A pilot, randomized controlled trial

Design
Prospective, multicenter, pilot, randomized controlled trial

Patients
200 moderate to severe early onset ARDS

Objectives
Compared the ARDSnet protocol using low levels of PEEP with open lung approach (OLA = recruitment maneuver and decremental PEEP trial based on the best compliance)

Main Results
Mortality at day 60 (29% OLA vs. 33% ARDSnet protocol, p=0.18), ICU mortality (25% OLA vs. 30% ARDSnet protocol, p = 0.53), and ventilator-free days (8 [0-20] OLA vs. 7 [0-20] d ARDSnet protocol, p = 0.53) were not significantly different. Airway driving pressure and PaO2/FIO2 improved significantly at 24, 48 and 72 hours in patients in OLA compared with patients in ARDSnet protocol.

Conclusion
OLA improved oxygenation and driving pressure

Figure 2: OLA was associated with better survival (with no statistically significant difference) in this pilot study, but a large, randomized controlled trial should be performed to compare outcomes between OLA and the ARDSnet protocol.
How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography

de Matos GF, Stanzani F, Passos RH, Fontana MF, Albaladejo R, Caserta RE, Santos DC, Borges JB, Amato MB, Barbas CS
Crit Care. 2012 Jan 8;16(1):R4

Design Prospective interventional study: Maximal recruitment strategy, staircase RM (recruitment maneuver) up to 45 cmH2O

Patients 51 early severe ARDS patients

Objectives Describes the effects of maximal recruitment strategy

Main Results The opening plateau-pressure was 60 ±6 cmH2O. Mean PaO2/FiO2 ratio increased from 125 ±43 to 300 ±103 after RM and was sustained above 300 throughout seven days. Non-aerated parenchyma decreased significantly from 54% [42-62] to 13% [5-24] RM. The potentially recruitable lung was estimated at 45% [25-53]. ICU mortality = 28% and hospital mortality = 33%.

Conclusion MR reversed hypoxemia and most of the collapsed lung tissue during the early stage of ARDS

Figure 3: RM following by PEEP titration allowed to decrease the non aerated tissue. Potential of recruitability is variable among ARDS patients and seems higher in early onset ARDS patients (grey histogram) than late ARDS patient (dashed lines)
Optimal duration of a sustained inflation recruitment maneuver in ARDS patients

Arnal JM, Paquet J, Wysocki M, Demory D, Donati S, Granier I, Corno G, Durand-Gasselin J

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: 30 seconds sustained inflation at 40 cmH2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>50 early ARDS patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Measure the dynamics of recruitment and the hemodynamic status during RM (recruitment maneuver)</td>
</tr>
<tr>
<td>Main Results</td>
<td>The average volume increase was 210 ±198 ml. Time constant was 2.3 ±1.3 s. Systolic and mean arterial pressures were maintained at 10 s, decreased significantly at 20 and 30 s during the RM, and recovered to the pre-RM value 30 s after the end of the RM. Heart rate, diastolic arterial pressure, and SpO2 did not change during or after the RM.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Most of the recruitment occurred during the first 10 s and hemodynamic impairment was significant after 10 s = The optimal duration of RM by sustained inflation is around 10 s</td>
</tr>
</tbody>
</table>

![Figure 4: Individual curves of sustained inflation showed that 10 seconds were sufficient to achieve the maximal increase in volume](image-url)
Prone position and recruitment manoeuvre: the combined effect improves oxygenation

Rival G, Patry C, Floret N, Navellou JC, Belle E, Capellier G
Crit Care. 2011 May;15(3):R125

Design
Prospective interventional study: Each patient was ventilated 6h in both the supine position (SP) and the prone position (PP). A 45 cmH2O extended sigh in PC was performed at the beginning of SP RM1 (recruitment maneuver), one hour after turning to the PP (RM2) and at the end of the 6h PP period (RM3).

Patients
16 early ARDS patients

Objectives
Study the effects on oxygenation of both RM and PP

Main Results
Improvements in PaO2 level and PaO2/FiO2 ratio were transient in SP but durable during PP. PaO2/FiO2 changes were significant only after RM3. This global strategy had a benefit with regard to oxygenation: PaO2/FiO2 ratio increased from 98 mmHg to 166 mmHg 13 hours later at the end of the study. Pplat (plateau pressure) decreased after each RM and over the entire PP period.

Conclusion
Combined RM and PP increased oxygenation

Comment
This RM method is associated with high VT with a risk of volutrauma.

Figure 5: Recruitment protocol in pressure control ventilation: increase of Pinsp by 5 cmH2O every 30s, to 45 cmH2O; then a 30 s pause is performed; then Pinsp is decrease by 5 cmH2O every 30 s to baseline.
Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicentre randomized controlled clinical trial

Xi XM, Jiang L, Zhu B; RM group

Design
Multicenter RCT: 40 seconds sustained inflation at 40 cmH2O/8 h during 5 days versus no RM (recruitment maneuver)

Patients
110 ARDS patients

Objectives
Evaluate the clinical efficacy and safety of RM

Main Results
In the RM group the PaO2/FiO2 was increased compared to baseline on day one and day two (P = 0.007 and P = 0.001). There were no significant differences in hospital mortality, 28-day mortality and ventilator-free days at day 28. ICU mortality (32.7% vs. 52.7%), the rate of survival with unassisted breathing for at least 48 consecutive hours at day 28 (58.2% vs. 36.2%) and nonpulmonary organ failure-free days at day 28 (17 ±11 vs. 13 ±12) favored the RM group.

Conclusion
RM had beneficial impact on clinical outcome

Figure 6: RM increased survival in ARDS patients
A recruitment maneuver increases oxygenation after intubation of hypoxemic intensive care unit patients: a randomized controlled study

Constantin JM, Futier E, Cherprenet AL, Chanques G, Guerin R, Cayot-Constantin S, JABAudon M, Perbet S, Chartier C, Jung B, Guelon D, Jaber S, Bazin JE
Crit Care. 2010 Apr;14(2):R76

Design
RCT: 30 seconds sustained inflation at 40 cmH2O versus no RM (recruitment maneuver)

Patients
40 patients intubated for acute hypoxemic respiratory failure

Objectives
Evaluate the efficacy and safety of RMs performed immediately after intubation

Main Results
5 min after intubation, PaO2 obtained under 100% FiO2 was significantly higher in the RM group compared with the control group (93 ±36 vs 236 ±117 mmHg). The difference remained significant at 30 minutes with 110 ±39 and 180 ±79 mmHg, respectively, for the control and RM groups. RM was not associated with increased adverse effects.

Conclusion
RM following intubation in hypoxemic patients improved oxygenation

Figure 7: RM after intubation increased oxygenation, and oxygenation remained high after 30 min
Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome

Am J Respir Crit Care Med. 2006 Aug 1;174(3):268-78

Design
Prospective interventional study: Maximal recruitment strategy, staircase RM (recruitment maneuver) up to 45 cmH2O

Patients
26 ARDS patients

Objectives
Test if RM is clinically applicable in early ARDS

Main Results
There was an improvement in oxygenation and reduction in the percent mass of collapsed tissue between Paw (airway pressure) = 40 and 60 cmH2O.

Conclusion
In early ARDS it was possible to open the lung in the majority of patients

Figure 8: Some patients needed Pplat (plateau pressure) = 60 cmH2O to full recruitment

Percent of patients fully recruited (n=24)

40% 50% 60%

Pplat: 45 50 55 60

(assessment performed at PEEP = 25 cmH2O)
Lung recruitment in patients with the acute respiratory distress syndrome

Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: PC with Pplat (plateau pressure) = 45 cmH2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>68 ARDS patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Examine the relationship between the percentage of potentially recruitable lung and the clinical and physiological effects of RM (recruitment maneuver)</td>
</tr>
<tr>
<td>Main Results</td>
<td>Patients with a higher percentage of potentially recruitable lung had greater total lung weights, poorer oxygenation, lower Crs (compliance of respiratory system), higher levels of dead space and higher rates of death than patients with a lower percentage of potentially recruitable lung.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>In ARDS, the percentage of potentially recruitable lung is extremely variable and is strongly associated with the response to PEEP</td>
</tr>
<tr>
<td>Comment</td>
<td>PEEP was not set according to recruitability. Setting low PEEP in patient with high potential of recruitable lung increases VILI and mortality.</td>
</tr>
</tbody>
</table>

Figure 9: The potential of recruitability is different from patient to patient in ARDS. The patient with the highest potential of recruitability are those with the worst prognosis

![Graph showing the potential of recruitability](image-url)
Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury

Intensive Care Med. 2003 Feb;29(2):218-25

Design Prospective interventional study: Staircase RM (recruitment maneuver) up to 30-40 cmH2O

Patients 10 ARDS patients

Objectives Assess the acute effect of a RM on lung morphology

Main Results Poorly aerated and non-aerated tissue at PEEP 10 cmH2O = 60 ±9% of lung parenchyma, 1 ±2% was hyperinflated. Increasing PEEP to 20 and 30 cmH2O, compared to PEEP 10 cmH2O, decreased poorly aerated and non-aerated tissue by 16 ±28% and 33 ±14%. Hyperinflated tissue increased up to 3 ±4% with PEEP 30 cmH2O.

Conclusion RM recruited collapsed alveoli without inducing too much hyperinflation

Figure 10: Increasing PEEP, decreased the non aerated tissue without increase of hyperinflated tissue
Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy

Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V
Anesthesiology. 2002 Apr;96(4):795-802

Design
Prospective interventional study: 40 seconds sustained inflation at 40 cmH2O

Patients
22 ARDS patients. Patients were classified as responders and nonresponders on the occurrence of a 50% increase in PaO2/FiO2

Objectives
Assess the influence of the elastic properties of the lung and chest wall on the effectiveness of a RM (recruitment maneuver).

Main Results
RM increased PaO2/FiO2 by 20 ±3% in nonresponders (n = 11) and by 175 ±23% (n = 11) in responders. El (elastance of lung) and Ecw (elastance of chest wall) were higher in nonresponders. Cardiac output and mean arterial pressure decreased by 31 ±2 and 19 ±3% in nonresponders and by 2 ±1 and 2 ±1% in responders.

Conclusion
RM improved oxygenation and was well tolerated in patients who do not have impairment of chest wall mechanics

Figure 11: Some patients increased SpO2 during RM, they were called "Responders" and the others didn’t increase SpO2, the "Non-responders"
Recruitment maneuvers: using transpulmonary pressure to help Goldilocks

Baedorf Kassis E, Loring S, Talmor D.

<table>
<thead>
<tr>
<th>Design</th>
<th>Post hoc analysis of EPVent study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>28 patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Measure the change in lung elastance during recruitment: A decrease in elastance of lung (negative ΔEL) was considered evidence of recruitment and an increase in elastance of lung (positive ΔEL) evidence of overdistension.</td>
</tr>
</tbody>
</table>
| **Main Results** | Recruited volume was dependent on transpulmonary pressure during the maneuver and inversely dependent on ΔEL (elastance of lung):
- ΔEL was positive during recruitment in patients with PL,RM (peak transpulmonary pressure) ≥ 20 cmH2O
- ΔEL was negative when PL,RM was between 10 and 20 cmH2O
- ΔEL was negligible in patients with PL,RM below 10 cmH2O |
| **Conclusion** | The optimal “window” where sufficient pressure expands the lung, optimizes elastance, and avoids overdistension is between 10 and 20 cmH2O |
| **Comment** | Transpulmonary pressure helps to determine the pressure that is efficient and safe to perform a recruitment maneuver |
Impact of recruitment on static and dynamic lung strain in acute respiratory distress syndrome

Anesthesiology. 2016 Feb;124(2):443-52

Design
Animal study and prospective physiological study

Patients
6 oleic acid-injured pigs and 6 patients with moderate-to-severe ARDS

Objectives
Clarify the role of recruitment in strain measurements defined as the ratio between end-inspiratory volume and functional residual capacity

Main Results
In the animal model, recruitment caused a significant decrease in dynamic strain (p<0.01), while increasing the static component. In patients, total strain remained constant for the three ventilatory settings. Increases in tidal volume had no significant effects. Increasing PEEP constantly decreased dynamic strain (p<0.05) and increased static strain (p<0.05). The changes in dynamic and total strain among patients were correlated to the amount of recruited volume.

Conclusion
Recruitment causes a shift from dynamic to static strain in early acute respiratory distress syndrome
Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome

Crit Care Med. 2016 Jan;44(1):91-9

<table>
<thead>
<tr>
<th>Design</th>
<th>EPVent substudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>42 ARDS patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Determine whether the volume delivered during a recruitment maneuver (VRM), consisting of sustained inflation at 40 cmH2O for 30 s, is inversely associated with lung stress and mortality in acute respiratory distress syndrome</td>
</tr>
<tr>
<td>Main Results</td>
<td>VRM ranged between 7.4 and 34.7 ml/kg predicted body weight. Lower VRM predicted high end-inspiratory and tidal lung stress. Low VRM was also associated with an increased risk of death.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Low VRM predicted high lung stress and may predict risk of death in patients with acute respiratory distress syndrome</td>
</tr>
<tr>
<td>Comment</td>
<td>This study used VRM to assess the maximum size of the aerated lung to establish the potential recruitability</td>
</tr>
</tbody>
</table>

Sigh in supine and prone position during acute respiratory distress syndrome

Am J Respir Crit Care Med. 2003 Feb 15;167(4):521-7

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: 3 sighs/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>10 early ARDS patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Evaluate recruitment in supine and prone position</td>
</tr>
<tr>
<td>Main Results</td>
<td>Sighs increased PaO2 in both supine and prone position. The highest values of PaO2 and EELV (end-expiratory lung volume) occurred with the addition of sighs in prone and remained significantly elevated 1 hour after discontinuation of the sighs. The increase in PaO2 associated with the sighs, both in supine and prone position, correlated linearly with the increase of EELV.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>RM (recruitment maneuver) during ventilation in the prone position provided optimal lung recruitment</td>
</tr>
</tbody>
</table>
Opening pressures and atelectrauma in acute respiratory distress syndrome

Intensive Care Med. 2017 May;43(5):603-611

<table>
<thead>
<tr>
<th>Design</th>
<th>Bicenter prospective study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>33 ARDS: 5 mild, 10 moderate, 9 severe without ECMO, 9 severe with ECMO</td>
</tr>
<tr>
<td>Objectives</td>
<td>Measure the recruitment at different PEEP and plateau pressures</td>
</tr>
<tr>
<td>Main Results</td>
<td>The ratio of lung tissue which opened between 30 and 45 cmH2O increased with the severity of the disease between 10 ±29 and 185 ±134 g (p < 0.05). The intratidal collapses were similar at a PEEP level of 5 cmH2O and 15 cmH2O, regardless of the severity. Increasing the applied airway pressure up to 45 cmH2O decreased the lung inhomogeneity in mild and moderate ARDS, but not in severe ARDS.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Patients with most severe ARDS are the most recruitable. For effective recruitment, pressures higher than 30 cmH2O are required</td>
</tr>
</tbody>
</table>

Figure 12: Light gray: mild ARDS; Dark blue: moderate ARDS; Light blue: severe ARDS without ECMO, Dark gray: severe ARDS with ECMO. The more severe the ARDS, the more recruitable the lungs.
A positive response to a recruitment maneuver with PEEP titration in patients with ARDS, regardless of transient oxygen desaturation during the maneuver

Design
Prospective interventional study: Staircase RM (recruitment maneuver) up to 40 cmH2O

Patients
20 early ALI patients

Objectives
Evaluate the safety and the respiratory and hemodynamic effects of a staircase RM

Main Results
There were significant improvements in shunt fraction, oxygen saturation (93% ±2% to 97% ±3%), PaO2, PaO2/FiO2, Crs (compliance of respiratory system), and chest x-ray after the RM. 80% of the patients responded and the response was maintained at 1 hour. 8 patients desaturated 6% ±3% in SpO2 during the RM but 5 of those improved SpO2 relative to baseline by the end of the RM.

Conclusion
Most patients with early ALI responded to the RM. Desaturation during the RM did not indicate a failed response 1 h later.

![Figure 13: Staircase recruitment maneuver protocol: Increase of PEEP by 10 cmH2O to 40cmH2O, step = 2min; decrease by 2,5 cmH2O, step = 3 min until SpO2 decrease](image-url)
Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure

Lapinsky SE, Aubin M, Mehta S, Boiteau P, Slutsky AS
Intensive Care Med. 1999 Nov;25(11):1297-301

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: 20 seconds sustained inflation at 30 to 45 cmH2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>14 patients with hypoxemic respiratory failure</td>
</tr>
<tr>
<td>Objectives</td>
<td>Assess the safety and efficacy of a 20 second sustained inflation</td>
</tr>
<tr>
<td>Main Results</td>
<td>Significant improvement in oxygenation occurred in the majority of patients within 10 min. The mean SpO2 improved from 87 ±5 to 94 ±2%. Hypotension and mild oxygen desaturation occurred in some patients during the 20-s inflation, reversing rapidly after inflation was terminated.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Sustained inflation is a safe, clinically applicable RM (recruitment maneuver) that improves oxygenation</td>
</tr>
</tbody>
</table>

Figure 14: SpO2 increased during the RM and remained higher than baseline after the RM

![Graph showing changes in SpO2 over time](image_url)
Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography

Intensive Care Med. 2016 Oct;42(10):1576-87

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective randomized crossover study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>20 patients; 12 with acute hypoxemic respiratory failure and 8 with acute ARDS</td>
</tr>
<tr>
<td>Objectives</td>
<td>Measure PEEP-related lung volume changes by EIT (electrical impedance tomography) and by the helium dilution technique</td>
</tr>
<tr>
<td>Main Results</td>
<td>PEEP-induced changes in lung inflation and recruitment measured by electrical impedance tomography and helium dilution showed close correlation ($r^2=0.78$, $p<0.001$ and $r^2=0.68$, $p<0.001$, respectively) but with relatively variable limits of agreement. At higher PEEP, recruitment was evident in all lung regions ($p<0.01$) and heterogeneity of tidal ventilation distribution was reduced by increased tidal volume distending the dependent lung ($p<0.001$); in the non-dependent lung, compliance decreased ($p<0.001$) and tidal hyperinflation significantly increased ($p<0.001$). In the subgroup of ARDS patients tidal hyperinflation in the dependent lung regions decreased at higher PEEP ($p=0.05$), probably indicating higher potential for recruitment.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>A high level of PEEP exerts mixed effects on the regional determinants of VILI (ventilator-induced lung injury)</td>
</tr>
</tbody>
</table>
Dynamics of end expiratory lung volume after changing positive end-expiratory pressure in acute respiratory distress syndrome patients

Garnero A, Tuxen D, Corno G, Durand-Gasselin J, Hodgson C, Arnal JM
Crit Care. 2015 Sep 18;19:340

Design
Prospective interventional study: Staircase RM (recruitment maneuver) up to 40 cmH2O

Patients
26 early onset moderate to severe ARDS patients

Objectives
Measure the dynamics of end-expiratory lung volume changes during an increase and decrease in PEEP between 5 and 40 cmH2O by steps of 5 cmH2O to determine the optimal duration for each step during an SRM

Main Results
During the increase in PEEP, the expected increased volume (respiratory system compliance by the increase in pressure) was achieved within 2 [2-2] breaths and 95% of the additional increased volume (total end expiratory volume change minus expected increased volume) was achieved within 13 [6–16] breaths. During the decrease in PEEP, the expected decreased volume was achieved within 1 [1-1] breath, and 95% of the additional decreased volume was achieved within 8 [2-15] breaths.

Conclusion
In early ARDS, most of the end expiratory volume change occurred within the first minute

Acute physiologic effects of a stepwise recruitment maneuver in acute respiratory distress syndrome

Minerva Anestesiol. 2011 Dec;77(12):1167-75

Design
Prospective interventional study: Staircase RM (recruitment maneuver) up to 40 cmH2O

Patients
13 early ARDS patients

Objectives
Assess the clinical impact of RM

Main Results
2 h after the RM, the PaO2/FiO2 was higher than at baseline (187 ±102 versus 339 ±136 mmHg). The RM was discontinued due to severe complications in four patients: 3 for CO2 decrease, 1 for hypotension, 1 for supraventricular tachycardia.

Conclusion
Staircase RM should be applied carefully and closely monitored
Acute hemodynamic effects of recruitment maneuvers in patients with acute respiratory distress syndrome

Park KJ, Oh YJ, Chang HJ, Sheen SS, Choi J, Lee KS, Park JH, Hwang SC

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: 30 seconds sustained inflation at 40 cmH2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>22 ARDS patients</td>
</tr>
<tr>
<td>Objectives</td>
<td>Evaluated circulatory and cardiac changes during RM (recruitment maneuver)</td>
</tr>
<tr>
<td>Main Results</td>
<td>Mean, systolic, and diastolic blood pressure decreased at 20 and 30 seconds during RM (mean blood pressure: 92 ±12 at baseline to 83 ±18 mmHg at the end of the RM) and subsequently recovered. Heart rate decreased at 10 and 20 seconds during the RM, and tended to increase afterward. Both ventricular dimensions decreased significantly during the RM. The left ventricular ejection fraction and peak velocity of the left ventricle during systole remained stable. The fractional changes in mean BP (blood pressure) and left ventricular end-diastolic dimension were correlated.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>A transient decrease in mean BP was observed during the RM, and its degree was correlated with the preload decrease</td>
</tr>
</tbody>
</table>

Intercomparison of recruitment maneuver efficacy in three models of acute lung injury

Lim SC, Adams AB, Simonson DA, Dries DJ, Broccard AF, Hotchkiss JR, Marini JJ
Crit Care Med. 2004 Dec;32(12):2371-7

<table>
<thead>
<tr>
<th>Design</th>
<th>Animal study: 40 seconds sustained inflation at 45 cmH2O, staircase RM (recruitment maneuver) and PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>28 pigs with VILI, oleic acid injury or pneumococcal pneumonia</td>
</tr>
<tr>
<td>Objectives</td>
<td>Evaluate the hemodynamic consequence of 3 RM techniques</td>
</tr>
<tr>
<td>Main Results</td>
<td>PC caused a lasting increase of PaO2 in the VILI model, but in oleic acid injury and pneumococcal pneumonia, there were no differences for any RM technique.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>The 3 RM techniques were equivalent in terms of oxygenation</td>
</tr>
</tbody>
</table>
Pediatric patients

Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study

Cruces P, Donoso A, Valenzuela J, Diaz F

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: Staircase RM (recruitment maneuver) up to 25 cmH2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>25 pediatric early ARDS patients, age = 5 [1-16] months</td>
</tr>
<tr>
<td>Objectives</td>
<td>Assess the effects on gas exchange and lung mechanics of RM in pediatric ARDS patients</td>
</tr>
</tbody>
</table>
| Main Results | 30 RM were performed, with all completed successfully. No airleaks developed. Mild hypotension was detected during 4 RM. Following RM, Crs (compliance of respiratory system), and PaO2/FiO2 increased without changes in PaCO2. Oxygenation improved at 12 and 24 hr. The 28-day mortality rate was 16%.

Conclusion
RM were safe, well tolerated and improved lung function in children with ARDS

Figure 15: Compliance decreased at high level of PEEP during RM but increase during the decremental PEEP trial and was higher at the end of the protocol than at baseline
The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients

Duff JP, Rosychuk RJ, Joffe AR

<table>
<thead>
<tr>
<th>Design</th>
<th>Prospective interventional study: 15-20 seconds sustained inflation at 30-40 cmH2O was performed following a ventilator disconnection, suctioning, hypoxemia, or routinely every 12 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>32 pediatric patients aged from 11 days to 14 years</td>
</tr>
<tr>
<td>Objectives</td>
<td>Assess the safety and efficacy of RM (recruitment maneuver) in pediatric patients</td>
</tr>
<tr>
<td>Main Results</td>
<td>7/93 RM (7.5%) were interrupted for patient agitation, and 2/93 (2.2%) for transient bradycardia. There was no change in systolic blood pressure, heart rate, or SpO2 from pre-RM to post-RM, and there were no air leaks. In 3 patients with altered intracranial compliance, 3/8 RM were associated with a spike of intracranial pressure. There was a sustained significant decrease in FiO2 by 6% lasting up to 6 h post-RM.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>RM was safe in pediatric patients</td>
</tr>
</tbody>
</table>
Comparison of 2 lung recruitment strategies in children with acute lung injury

Kheir JN, Walsh BK, Smallwood CD, Rettig JS, Thompson JE, Gómez-Laberge C, Wolf GK, Arnold JH
Respir Care. 2013 Aug;58(8):1280-90

Design
Prospective, non-randomized, crossover pilot study: 40 seconds sustained inflation at 40 cmH2O and staircase RM (recruitment maneuver) up to 35 cmH2O

Patients
10 pediatric ALI patients from 4 years to 17 years

Objectives
Compare the acute effects of 2 RM strategies

Main Results
Both methods were effective in raising PaO2 and FRC (functional residual capacity). Sustained inflation was associated with temporary desaturation. During the staircase RM, dead-space and PaCO2 increased, CO2 elimination and Crs decreased.

Conclusion
Both methods were effective in raising PaO2 but staircase RM required caution about CO2

Figure 16: PaCO2 increased and pH decreased during staircase recruitment maneuver
Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study

Design
Case series: Staircase RM (recruitment maneuver)

Patients
6 pediatric ALI patients aged from 1 month to 15 years

Objectives
Describe CT-scan lung aeration changes and gas exchange after RM in pediatric ALI patients

Main Results
There was a variable increase in aerated and poorly aerated lung after the RM ranging from 3% to 72% (20% [6-47]). All patients had improvement in PaO2 /FiO2 after the RM (14% [8-72]. 4/6 had a decrease in PaCO2. One subject had transient hypercapnia during the RM and this correlated with the smallest increase in aerated lung. All patients tolerated the RM without hemodynamic compromise, barotrauma, hypoxemia, or dysrhythmias.

Conclusion
Lung recruitment resulted in improved lung aeration as detected by lung tomography, accompanied by improvements in oxygenation and ventilation.

![Figure 17: Pediatric staircase recruitment maneuver protocol. PEEP is increased by 2 cmH2O every minute to critical opening pressure (PEEP associated with the highest Crs) or Pinsp = 45 cmH2O. Then PEEP is decreased by 2 cmH2O every minute to critical opening pressure (PEEP associated with the highest Crs). After 2 min is spent at the critical opening pressure and PEEP is settled at critical opening pressure +2 cmH2O.](image)
Additional files

Recruitment maneuvers and PEEP titration

Hess DR
Respir Care. 2015 Nov;60(11):1688-704

<table>
<thead>
<tr>
<th>Design</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion</td>
<td>Principles and methods for recruitment and PEEP titration</td>
</tr>
</tbody>
</table>

Lung recruitment in acute respiratory distress syndrome: what is the best strategy?

Keenan JC, Formenti P, Marini JJ

<table>
<thead>
<tr>
<th>Design</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion</td>
<td>Why, when and how to perform RM (recruitment maneuver)</td>
</tr>
</tbody>
</table>
Recruitment maneuvers for acute lung injury: a systematic review

Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, Meade MO, Ferguson ND
Am J Respir Crit Care Med. 2008 Dec 1;178(11):1156-63

<table>
<thead>
<tr>
<th>Design</th>
<th>Systematic review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Summarize the physiologic effects and adverse events of RM (recruitment maneuver)</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Oxygenation was significantly increased after an RM, there were no persistent, clinically significant changes in hemodynamic parameters after an RM. Hypotension and desaturation were the most common adverse events. Serious adverse events (barotrauma [1%] and arrhythmias [1%]) were infrequent.</td>
</tr>
</tbody>
</table>