Volumetric capnography

  • Complements patient monitoring
  • Provides information about lung homogeneity or heterogeneity
  • Can be used for multiple clinical applications
  • Helps you optimize your ventilator settings
  • Easy to use


Sophisticated CO2 measurement

All Hamilton Medical ventilators provide volumetric capnography, either standard or as an optional feature. The CO2 measurement is performed using a CAPNOSTAT® 5 mainstream CO2 sensor at the patient‘s airway opening.

The CAPNOSTAT® 5 sensor provides technologically advanced measurements of end-tidal carbon dioxide (PetCO2), respiratory rate, in addition to a clear, accurate capnogram at all respiratory rates up to 150 breaths per minute.

Volumetric capnogram on the display

The volumetric capnogram window on the display shows:

1) Current volumetric capnogram curve

2) Volumetric capnogram reference curve

3) Reference curve button with time and date of reference loop

4) Most relevant CO2 values, breath by breath

72-hour trend function

To allow a more comprehensive analysis of the patient condition, a 72-hour trend (or 96-hour with HAMILTON-S1/G5) is available for:

PetCO2, V‘CO2, FetCO2, VeCO2, ViCO2, VTE/Vtalv,  VDaw, VD/Vt, Slope CO2

Volumetric capnography in monitoring

To make your life easier, Hamilton Medical ventilators offer an overview of all relevant CO2-related values in the Monitoring CO2 window.

eBook on volumetric capnography

Learn how to interpret a volumetric capnogram and get an overview of the benefits and the clinical applications of volumetric capnography. Includes a self-test!

Download the eBook


Anderson JT, Owings JT, Goodnight JE. Bedside noninvasive detection of acute pulmonary embolism in critically ill surgical patients. Arch Surg 1999; 134(8):869–874; discussion 874–875.

Astrom E, Niklason L, Drefeldt B, Bajc M, Jonson B. Partitioning of dead space – a method and reference values in the awake human. Eur Respir J. 2000 Oct; 16(4):659-664.

Blanch L, Romero PV, Lucangelo U. Volumetric capnography in the mechanically ventilated patient. Minerva Anestesiol. 2006 Jun;72(6):577-85.

Erikson, L, Wollmer, P, Olsson, CG, et al. Diagnosis of pulmonary embolism based upon alveolar dead space analysis. Chest 1989;96,357-362.

Fletcher R. The single breath test for carbon dioxide [dissertation]. Lund, Sweden: University of Lund, 1980. 2nd edition revised and reprinted, Solna, Sweden:Siemens Elema, 1986.

Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005 Apr;50(4):462-7.

Kumar AY, Bhavani-Shankar K, Moseley HS, Delph Y. Inspiratory valve malfunction in a circle system: pitfalls in capnography. Can J Anaesth 1992;39(9):997–999.

Olsson K, Jonson B, Olsson CG, Wollmer P. Diagnosis of pulmonary embolism by measurement of alveolar dead space. J Intern Med. 1998 Sep;244(3):199-207.

Pyles ST, Berman LS, Modell JH. Expiratory valve dysfunction in a semiclosed circle anesthesia circuit: verification by analysis of carbon dioxide waveform. Anesth Analg 1984;63(5):536–537.

Rodger MA, Jones G, Rasuli P, Raymond F, Djunaedi H, Bredeson CN, Wells PS. Steady-state end-tidal alveolar dead space fraction and D-dimer: bedside tests to exclude pulmonary embolism. Chest 2001;120(1):115–119.

Yaron M, Padyk P, Hutsinpiller M, Cairns CB. Utility of the expiratory capnogram in the assessment of bronchospasm. Ann Emerg Med. 1996 Oct;28(4):403-7.

Wolff G, Brunner JX, Weibel W, et al. Anatomical and series dead space volume: concept and measurement in clinical practice. Appl Cardiopul Pathophysiol 1989; 2:299-307.