我们检测到您正在 美国 访问我们的网站。
我们针对您的国家(美国)提供单独版本的网站。

切换至 美国
 产品

HAMILTON-MR1。 从 ICU 到 MRI 的智能通气

HAMILTON-MR1_MRI_desktop_01

我们的 MRI 专家。在 MRI 检查期间提供高端通气

  • 用于 MRI 室的综合 ICU 呼吸机
  • 可用于 1.5 Tesla 和 3.0 Tesla 静磁场扫描仪的条件性 MR 兼容设备
  • 呼吸机即使在 MRI 扫描时仍可放在病人旁边
  • 适用于所有病人群体
HAMILTON-MR1_MRI_desktop_01
HAMILTON-MR1

我们的 MRI 专家。 在 MRI 检查期间提供高端通气

  • 用于 MRI 室的综合 ICU 呼吸机
  • 可用于 1.5 Tesla 和 3.0 Tesla 静磁场扫描仪的条件性 MR 兼容设备
  • 呼吸机即使在 MRI 扫描时仍可放在病人旁边
  • 适用于所有病人群体
HAMILTON-MR1

伴我步行! 从病人病房到 MRI 科室

  • 长达 540 分钟电池续航时间
  • 高性能涡轮
  • 紧凑和便携型
HAMILTON-MR1

持续通气治疗。 和床旁相同的模式和设置

  • 容量控制和压力控制通气模式
  • 带 ASV® 的适应性通气
  • 无创通气
  • 高流量鼻导管治疗
HAMILTON-MR1

一直警戒。 您的磁场导航器

TeslaSpy 帮助您使呼吸机与 MRI 扫描仪保持安全距离。

HAMILTON-MR1

两个强壮的臂。 超长呼吸管路

在适合 MRI 科室的各种不同长度呼吸管路之间选择。

HAMILTON-MR1

保持停留! 自动锁定到位

台车上的自锁式刹车自动锁定到位,预防呼吸机意外滚向 MRI 扫描仪。

HAMILTON-MR1
HAMILTON-MR1;在 MRI 扫描过程中使用

靠近点! 高达 50 mT 下特定磁共振条件适用

HAMILTON-MR1 允许您靠近 MRI 扫描仪,这是因为它经过专门设计,可承受高达 50 mT 的静态磁场。相比磁场屏蔽较弱的呼吸机,放置设备时它为您提供更多自由,更大移动范围,以及更高工作流程和病人设置的灵活性。

更靠近扫描仪同时也意味着您可以使用更短的呼吸管路。优点是减少可压缩容积,从而有利于提高整个通气质量。

HAMILTON-MR1 按下快速释放按钮

轻松连接和断开。 易于转换

转运套件上的快速释放按钮允许您通过按下按钮,断开设备与台车。重新连接也这么简单。

With the new Software update 3.0 for the HAMILTON-MR1, the audiovisual TeslaSpy alarms on the are now mirrored on both the ventilator display and the alarm lamp for greater visibility. TeslaSpy is a magnetic field navigator which continuously measures the background magnetic levels, even when the ventilator is switched off. It lets you know when magnetic field levels are safe, and when they exceed the ventilator’s safety threshold. The TeslaSpy alarms are now also included in the Event log. The Software Update 3.0 brings a lot of new features to our compact devices. To learn more go to: www.hamilton-medical.com/compact-device-more-features The availability of SW v3.0.x, as well as individual features, depends on the specific device and market.

配有机载导航器。 磁场导航

机载磁场导航器 TeslaSpy 可持续监测磁场,并在距离太近时发出声音和视觉信号。将医疗设备放在距离 MRI 扫描仪太近的地方会导致致命后果。

TeslaSpy 报警通过设备图形用户界面和报警灯显示。为了提供最大安全,TeslaSpy 持续进行监测,即使呼吸机电源关闭时。

想要查看更多信息?
探索 3D 模型

从各个角度发现 HAMILTON-MR1,点击热点,以了解更多信息。

快速了解详情

  • 标配
  • 选项
  • 不可用
病人组 成人/儿童、新生儿
外形尺寸(宽x深x高) 320 x 220 x 270 mm(呼吸机主机)
630 x 630 x 1400 mm(含台车)
重量 6.8 kg(15 磅)
21 kg(46.2 磅)(含台车)
监视器尺寸和分辨率 214 mm(8.4 英寸)对角线
640 x 480 像素
可拆卸式监视器
电池运行时间 两块电池 8 小时
热插拔电池
气源 集成涡轮
O2 接头 DISS (CGA 1240) 或 NIST
连接 USB 端口
音量 42 dB(在正常运行情况下)
容量控制、流量控制
定量、适应性压力控制
智能通气 ASV®
无创通气
高流量
肺力学指标可视化(动态肺)
病人呼吸机依赖性可视化
食道压测量
二氧化碳图
氧饱和度监测
肺复张性评估和肺复张 (P/V Tool Pro)
人机同步 (IntelliSync+)
CPR 通气
Hamilton Connect 模块
Hamilton Connect 应用
远程连接至 HAMILTON-H900 湿化器
集成 IntelliCuff 气囊压力控制器
集成气动雾化器
集成 Aerogen 雾化器
与 Sedaconda ACD-S 麻醉剂输送系统的兼容性
Adrian Wäckerlin 博士 Thomas Berlin

客户评语

直到现在,我们仍然使用麻醉呼吸机在 MRI 扫描过程中为 ICU 病人通气。因此,我们不得不在每次操作设备时咨询麻醉师。有了 HAMILTON-MR1,我们现在完全可以独立完成操作。

Adrian Wäckerlin 博士

ICU 主管
瑞士库尔格劳宾登州州立医院

客户评语

您可以把正在使用 HAMILTON‑MR1 的病人从 ICU 带到楼下的磁共振成像室进行磁共振研究,而无需对机械通气作任何改变。这无疑是一个真正的优势,因为这不会导致病人肺塌陷和病情复发的风险,该风险会延长病人住院时间,给病人带来更多不适。

Thomas Berlin

呼吸治疗主任
美国佛罗里达州奥兰多 AdventHealth Orlando 医院

用于您的病人

智能通气解决方案概述

ASV® - Adaptive Support Ventilation®。 适用于全天候适应

根据病人的肺力学指标和呼吸用力,ASV 通气模式每天 24 时从插管到拔管连续调整每次呼吸时的呼吸频率、潮气量和吸气时间。

集成雾化器。 适用于额外治疗

集成气动雾化器完全与吸气和呼气时间同步。

集成同步 Aerogen 雾化系统作为一个选配件提供 (并非在所有市场均有提供a​, 仅适用于 HAMILTON-C6/G5/S1b​)。

输送药物气溶胶粒子的细水雾有助于您恢复支气管痉挛、提高通气效率和减少高碳酸血症 (Dhand R. New frontiers in aerosol delivery during mechanical ventilation.Respir Care.2004;49(6):666-677.100​, Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.Curr Drug Deliv.2008;5(2):114-119. doi:10.2174/156720108783954815101​)。

说话瓣膜。 适用于“话匣子”

说话瓣膜选项让气管切开的病人说话,而且允许他们甚至在接受通气治疗时吞咽。

调节呼吸机的监测、触发和报警管理,以在压力控制模式 (PCV+, SPONT, PSIMV+) 下与说话瓣膜兼容。

呼吸机状态面板。 适用于准备撤机者

通气状态面板显示与病人的呼吸机依赖性相关的六个参数,包括氧合状态、CO2 清除状态和病人活动。

各栏中上下移动的浮动指示器显示给定参数的当前值。

动态肺面板。 使用目视监测者

动态肺面板向您显示下列重要监测数据的实时图表视图:

  • 顺应性和阻力
  • 病人触发
  • 氧饱和度
  • 脉率

高性能无创通气。 适用于面罩佩戴者

无创通气模式提供压力支持流速切换的自主呼吸(NIV 和 NIV-ST 模式)和压力控制时间切换的指令呼吸 (NIV-ST)。

与使用压缩空气的呼吸机相比,我们的涡轮驱动呼吸机能够提供更高的峰值流量。这就保证了即便漏气严重也具有最佳性能。

高流量鼻导管治疗。 适用于通气专家

高流量鼻导管治疗(也称为高流量氧疗。此术语可与高流量鼻导管治疗互换使用f​)可作为我们所有呼吸机上的一个选项提供。只需简单几步,即可更改界面,并且使用同一装置和呼吸管路来满足病人的治疗需求。

可配置的环图和趋势图。 适用于统计员

呼吸机可根据所选的监测参数组合显示动态环图。有了趋势图功能,您可以看到针对您选择的监测参数和时间框所显示的趋势数据。 

设备持续将监测参数保存在其存储器中,即使在待机时也不停止。

为您提供

呼吸装置,同轴

预组装。 且可直接使用

我们预组装的呼吸装置包括操作呼吸机所需的基本耗材,而且方便地放在一个包装袋中。

我们的所有基本耗材都专门为保证制造商质量的 Hamilton Medical 哈美顿医疗公司呼吸机开发。

自动化;手动顺时针旋转旋钮

减少人工操作。 更适应您的病人

为管理通气,您通常需要设置多个参数,例如,压力、容量、吸气和呼气触发、气囊压力等。每次您的病人状况改变时,您需要进行一次或多次调节。

为简化此过程和减少人工操作,我们创建了一系列解决方案:

适应性支持通气 (ASV) 是一种根据病人的肺力学指标和呼吸用力连续适应呼吸频率、潮气量和吸气时间的通气模式。研究表明,ASV 可缩短各种病人群体的机械通气时间,而且手动设置更少 (Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.Chest.2015;147(6):1503-1509. doi:10.1378/chest.14-25991​, Tam MK, Wong WT, Gomersall CD, et al.A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.J Crit Care.2016;33:163-168. doi:10.1016/j.jcrc.2016.01.0182​, Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.Anesthesiology.2015;122(4):832-840. doi:10.1097/ALN.00000000000005893​).

气囊压力管理的常规解决方案需要您手动监测和调节气囊压力。

IntelliCuff 通过连续测量和自动维持所设置的成人、儿童和新生儿病人的气囊压力,安全管理病人的气道 (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM.Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.Respir Care.2015;60(2):183-190. doi:10.4187/respcare.033874)。

与触摸屏互动的专业人士

帮助随手可得! 屏幕上关于故障排除的帮助内容

无论何时出现问题,呼吸机都会利用报警灯、声音和信息栏警示您。

屏幕上的帮助内容向您提供有关如何解决报警的建议。

坐在轮椅上接受呼吸机治疗的病人

撤离呼吸机! 实施撤机方案的工具

我们希望我们的呼吸机尽可能快速与病人脱离。因此我们向您提供工具帮助您实施您的撤机方案。

其中包括旨在鼓励自主呼吸的可视帮助和通气模式。

考察 Hamilton Medical 哈美顿医疗公司在线学习的专业人士

掌握窍门! 学习路径和教学内容

我们的在线学院提供易于遵循的学习路径,以使您尽快熟悉 Hamilton Medical 哈美顿医疗公司产品和技术。

面向未来

图:指向未来的指南针

不断革新。 扩展您的呼吸机的能力

我们不断努力进一步革新我们的产品。添加新的功能和改善现有功能,以确保您在您的呼吸机寿命期间始终拥有最新的通气技术。

如何使您的呼吸机保持最新
Hamilton 通气家族 Hamilton 通气家族

识一而知全部。 通用用户界面

无论用于 ICU、MRI 科室或病人转运,所有 Hamilton Medical 哈美顿医疗公司呼吸机的用户界面操作方式均相同。

我们的通气酷屏将复杂的数据集成到直观的可视化图像。

完整解决方案

完全集成的附件

我们围绕最高病人安全性和易用性开发我们的附件。我们尽可能将附件集成到我们的呼吸机,以简化整个呼吸机系统的操作。

我们的耗材

所有 Hamilton Medical 哈美顿医疗公司原装产品旨在与 Hamilton Medical 哈美顿医疗公司呼吸机配合提供最佳性能。为确保最大用户满意度和病人安全,我们努力符合最高的质量和安全标准。

A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.

Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599



BACKGROUND

Adaptive support ventilation (ASV) is a closed loop mode of mechanical ventilation (MV) that provides a target minute ventilation by automatically adapting inspiratory pressure and respiratory rate with the minimum work of breathing on the part of the patient. The aim of this study was to determine the effect of ASV on total MV duration when compared with pressure assist/control ventilation.

METHODS

Adult medical patients intubated and mechanically ventilated for > 24 h in a medical ICU were randomized to either ASV or pressure assist/control ventilation. Sedation and medical treatment were standardized for each group. Primary outcome was the total MV duration. Secondary outcomes were the weaning duration, number of manual settings of the ventilator, and weaning success rates.

RESULTS

Two hundred twenty-nine patients were included. Median MV duration until weaning, weaning duration, and total MV duration were significantly shorter in the ASV group (67 [43-94] h vs 92 [61-165] h, P = .003; 2 [2-2] h vs 2 [2-80] h, P = .001; and 4 [2-6] days vs 4 [3-9] days, P = .016, respectively). Patients in the ASV group required fewer total number of manual settings on the ventilator to reach the desired pH and Paco2 levels (2 [1-2] vs 3 [2-5], P < .001). The number of patients extubated successfully on the first attempt was significantly higher in the ASV group (P = .001). Weaning success and mortality at day 28 were comparable between the two groups.

CONCLUSIONS

In medical patients in the ICU, ASV may shorten the duration of weaning and total MV duration with a fewer number of manual ventilator settings.

TRIAL REGISTRY

ClinicalTrials.gov; No.: NCT01472302; URL: www.clinicaltrials.gov.

A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.

Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018



PURPOSE

This study aims to compare the effectiveness of weaning with adaptive support ventilation (ASV) incorporating progressively reduced or constant target minute ventilation in the protocol in postoperative care after cardiac surgery.

MATERIAL AND METHODS

A randomized controlled unblinded study of 52 patients after elective coronary artery bypass surgery was carried out to determine whether a protocol incorporating a decremental target minute ventilation (DTMV) results in more rapid weaning of patients ventilated in ASV mode compared to a protocol incorporating a constant target minute ventilation.

RESULTS

Median duration of mechanical ventilation (145 vs 309 minutes; P = .001) and intubation (225 vs 423 minutes; P = .005) were significantly shorter in the DTMV group. There was no difference in adverse effects (42% vs 46%) or mortality (0% vs 0%) between the 2 groups.

CONCLUSIONS

Use of a DTMV protocol for postoperative ventilation of cardiac surgical patients in ASV mode results in a shorter duration of ventilation and intubation without evidence of increased risk of adverse effects.

A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.

Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589



BACKGROUND

Adaptive support ventilation can speed weaning after coronary artery surgery compared with protocolized weaning using other modes. There are no data to support this mode of weaning after cardiac valvular surgery. Furthermore, control group weaning times have been long, suggesting that the results may reflect control group protocols that delay weaning rather than a real advantage of adaptive support ventilation.

METHODS

Randomized (computer-generated sequence and sealed opaque envelopes), parallel-arm, unblinded trial of adaptive support ventilation versus physician-directed weaning after adult fast-track cardiac valvular surgery. The primary outcome was duration of mechanical ventilation. Patients aged 18 to 80 yr without significant renal, liver, or lung disease or severe impairment of left ventricular function undergoing uncomplicated elective valve surgery were eligible. Care was standardized, except postoperative ventilation. In the adaptive support ventilation group, target minute ventilation and inspired oxygen concentration were adjusted according to blood gases. A spontaneous breathing trial was carried out when the total inspiratory pressure of 15 cm H2O or less with positive end-expiratory pressure of 5 cm H2O. In the control group, the duty physician made all ventilatory decisions.

RESULTS

Median duration of ventilation was statistically significantly shorter (P = 0.013) in the adaptive support ventilation group (205 [141 to 295] min, n = 30) than that in controls (342 [214 to 491] min, n = 31). Manual ventilator changes and alarms were less common in the adaptive support ventilation group, and arterial blood gas estimations were more common.

CONCLUSION

Adaptive support ventilation reduces ventilation time by more than 2 h in patients who have undergone fast-track cardiac valvular surgery while reducing the number of manual ventilator changes and alarms.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2-h trial incorporating continuous mannikin head movement; and part 2, an 8-h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

New frontiers in aerosol delivery during mechanical ventilation.

Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.

The scientific basis for inhalation therapy in mechanically-ventilated patients is now firmly established. A variety of new devices that deliver drugs to the lung with high efficiency could be employed for drug delivery during mechanical ventilation. Encapsulation of drugs within liposomes could increase the amount of drug delivered, prolong the effect of a dose, and minimize adverse effects. With improved inhalation devices and surfactant formulations, inhaled surfactant could be employed for several indications in mechanically-ventilated patients. Research is unraveling the causes of some disorders that have been poorly understood, and our improved understanding of the causal mechanisms of various respiratory disorders will provide new applications for inhaled therapies.

Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815

Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available.