We have detected that you are visiting our website from United States.
We offer a separate version of the website for your country (United States).

Switch to United States
 Products

HAMILTON-G5/S1. The modular high-end ventilation solution

HAMILTON-G5/S1 ventilators HAMILTON-G5/S1 ventilators

One for all. Your resourceful all-rounder

In the critical care unit, the HAMILTON-G5 and HAMILTON-S1 ventilators are your faithful allies for all patient populations, from neonates to adults. Thanks to their multitude of high-end features, they can support your patients for all their ventilation needs, from high flow oxygen therapy to invasive ventilation. And when the time comes, advanced modes such as INTELLiVENT-ASV can even help you wean them (Neuschwander A, Chhor V, Yavchitz A, Resche-Rigon M, Pirracchio R. Automated weaning from mechanical ventilation: Results of a Bayesian network meta-analysis. J Crit Care. 2021;61:191-198. doi:10.1016/j.jcrc.2020.10.0251​​).

Graphic illustration: human lung with symbol "protective shield" as sign for lung protection

As you need it. And individualization for your patients

With the wide choice of optional features on the HAMILTON-G5, you can create your own custom-made solution for providing individualized lung-protective ventilation to your patients:

  • Intelligent ventilation modes
  • Lung assessment and recruitment
  • Synchronization based on waveform analysis
  • Transpulmonary pressure measurement
Specialist operates a HAMILTON-S1

At eye level. Remote access to humidifier controls and status

The unique ventilator connectivity option enables you to operate the HAMILTON-H900 humidifier directly from the ventilator's display. You can access all the controls, monitoring parameters, and alarms, and adjust them as needed.

The humidifier can also select the humidification mode automatically (invasive, noninvasive, or high flow) based on the selected ventilation mode.

Want to see more?
Explore the 3D model

Discover the HAMILTON-G5/S1 from every angle and click on the hotspots to learn more.

For quick details

  • Standard
  • Option
  • Not available
Patient groups Adult/Ped, Neonatal
Dimensions (W x D x H) 500 x 450 x 440 mm (ventilation unit)
580 x 600 x 1300 mm (min. monitor mounted on rail)
580 x 600 x 1500 mm (max. monitor mounted on rail)
Weight Ventilation unit, monitor, and shelf mount: 38 kg (83.8 lb)
57 kg (125.6 lb) with standard trolley, monitor, and ventilation unit
Monitor size and resolution 15 in (381 mm) diagonal
1024 x 768 pixels
Detachable monitor
Battery operating time 1 h with one battery
Hot-swappable battery
Air supply Requires compressed air
O2 connector DISS (CGA 1240) or NIST (optional), NF (optional)
Connectivity CompactFlash, USB, DVI, COM (RS-232), Special interface
Loudness 38.6 dB in normal operation
Volume controlled, flow controlled
Volume targeted, adaptive pressure controlled
Intelligent ventilation ASV®, INTELLiVENT®-ASV® (option on HAMILTON-G5, standard on HAMILTON-S1)
Noninvasive ventilation
High flow
Visualization of lung mechanics (Dynamic Lung)
Visualization of the patient’s ventilator dependence
Esophageal pressure measurement
Capnography
SpO2 monitoring
Recruitability assessment and lung recruitment (P/V Tool Pro)
Patient-ventilator synchronization (IntelliSync+)
CPR ventilation
Hamilton Connect Module
Hamilton Connect App
Remote connection to HAMILTON-H900 humidifier
Integrated IntelliCuff cuff pressure controller
Integrated pneumatic nebulizer
Integrated Aerogen nebulizer
Compatibility with Sedaconda ACD-S anesthetic delivery system
Craig Jolly Bimari Treuren

Customer voices

What I like the most about the HAMILTON-G5s is probably the monitoring parameters and the ability to trend those in real time and up to 72 hours. I have been able to use that on a disease-specific basis and trend data that I couldn’t do before.

Craig Jolly

RRT, Adult Clinical Education Coordinator
University Medical Center, Lubbock (TX), USA

Customer voices

The HAMILTON-G5 has given us a lot of different options and features all of which are in great need in the NICU.

Bimari Treuren

Respiratory Therapy Clinical Supervisor
Florida Hospital for Children, Orlando (FL), USA

For your patients

Intelligent ventilation solutions at a glance

ASV® - Adaptive Support Ventilation®. For adaptation around the clock

The ventilation mode ASV continuously adjusts the respiratory rate, tidal volume, and inspiratory time breath by breath depending on the patient’s lung mechanics and effort - 24 hours a day, from intubation to extubation.

INTELLiVENT®-ASV. For bedside assistance

The intelligent ventilation mode INTELLiVENT-ASV continuously controls the ventilation and oxygenation of the patient.

It sets the minute ventilation, PEEP, and Oxygen based on the targets set by the clinician, and on physiologic input from the patient.

IntelliSync®+. For patient-ventilator synchrony

Continuously analyzing waveform shapes hundreds of times per second allows IntelliSync+ to detect patient efforts and cycling immediately, and initiate inspiration and expiration in real-time.

IntelliSync+ applies to invasive and noninvasive ventilation, regardless of the ventilation mode.

P/V Tool® Pro. For lung assessment and recruitment

You can use the P/V Tool Pro to assess lung recruitability and determine the recruitment strategy.

Additionally, you can use it to perform a sustained inflation recruitment maneuver and measure the increase in lung volume.

Transpulmonary pressure measurement. For inside insights

Transpulmonary pressure measurement allows optimization of PEEP, tidal volume, and inspiratory pressure.

Use it in combination with the P/V Tool Pro to assess lung recruitability and perform recruitment maneuvers.

Remote humidifier access. For your convenience

The unique ventilator connectivity option enables you to operate the HAMILTON-H900 humidifier (The HAMILTON-H900 is not approved for use during transport.e​) directly from the ventilator's display. You can access all the controls, monitoring parameters, and alarms, and adjust them as needed.

The humidifier can also select the humidification mode automatically (invasive, noninvasive, or high flow) based on the selected ventilation mode.

Integrated nebulizer. For additional treatments

The integrated pneumatic nebulizer is fully synchronized with the timing of inspiration and expiration.

An integrated, synchronized Aerogen nebulizer is available as an option (Not available in all marketsa​, Only available for HAMILTON-C6/G5/S1b​).

The delivery of a fine mist of drug aerosol particles helps you reverse bronchospasm, improve ventilation efficiency, and reduce hypercapnia (Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677. 100​, Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815101​).

Integrated IntelliCuff®. For controlled cuff pressure

IntelliCuff continuously measures and automatically maintains the user-set cuff pressure of an endotracheal or tracheostomy tube in real-time (IntelliCuff Auto mode not available in all markets.c​).

High flow nasal cannula therapy. For O2 fanatics

High flow nasal cannula therapy is available as an option on all our ventilators. In just a few steps, you can change the interface and use the same device and breathing circuit to accommodate your patient’s therapy needs.

Volumetric capnography. For CO2ntrol freaks

Proximal flow and CO2 measurement enables our ventilators to perform up-to-date volumetric capnography, which provides an important basis for the assessment of ventilation quality and metabolic activity.

Vent Status panel. For those who are ready to wean

The Vent Status panel displays six parameters related to the patient’s ventilator dependence, including oxygenation, CO2 elimination, and patient activity.

A floating indicator moving up and down within each column shows the current value for a given parameter.

Quick Wean. For the independent-minded

Quick Wean is a feature of the INTELLiVENT-ASV mode that provides continuous dynamic monitoring and control of patient conditions to evaluate the patient’s readiness for extubation.

Automated SBTs. For the spontaneous ones

The automated spontaneous breathing trials (SBTs) are part of the Quick Wean function in the INTELLiVENT-ASV mode and give you the option of conducting fully controlled SBTs.

Dynamic Lung panel. For visual people

The Dynamic Lung panel shows you a graphic real-time representation of the following important monitoring data:

  • Tidal volume
  • Compliance and resistance
  • Patient triggering
  • SpO2
  • Pulse rate

Configurable loops and trends. For statisticians

The ventilator can display a dynamic loop based on a selected combination of monitored parameters. With the trend function, you can see trending information displayed for the monitoring parameters and time frame of your choice. 

The device continually stores the monitored parameters in its memory, even when in Standby.

Pulse oximetry. For SpO2 enthusiasts

The SpO2 option offers integrated noninvasive SpO2 measurement with the data displayed conveniently on your ventilator.

We also offer a comprehensive portfolio of SpO2 sensors.

High-performance noninvasive ventilation. For mask-wearers

The noninvasive ventilation modes deliver pressure-supported, flow-cycled spontaneous breaths (NIV and NIV-ST mode) and pressure-controlled, time-cycled mandatory breaths (NIV-ST).

Compared to ventilators using compressed air, our turbine-driven ventilators are capable of providing higher peak flow rates. This guarantees optimal performance even with large leaks.

nCPAP modes. For the little ones

The nCPAP modes are designed so you only need to set the desired CPAP pressure. The flow is subsequently adjusted based on patient conditions and potential leaks. This prevents unintended peak pressures, guarantees highly efficient leak compensation, and helps to reduce oxygen consumption. Flow adjustment occurs very rapidly due to the high sensitivity of the pressure measurement.

Heliox therapy. For constricted airways

Heliox therapy can help you successfully reduce the patient’s work of breathing while treating the cause of upper airway obstructions (Hess DR, Fink JB, Venkataraman ST, Kim IK, Myers TR, Tano BD. The history and physics of heliox. Respir Care. 2006;51(6):608-612. 102​, Berkenbosch JW, Grueber RE, Graff GR, Tobias JD. Patterns of helium-oxygen (heliox) usage in the critical care environment. J Intensive Care Med. 2004;19(6):335-344. doi:10.1177/0885066604269670103​).

For you

Breathing circuit set, coaxial

Preassembled. And ready to use

Our preassembled breathing circuit sets include the essential consumables to operate the ventilator, conveniently packaged in one single bag.

All our essential consumables are specially developed for Hamilton Medical ventilators with guaranteed manufacturer quality.

Automation; Hand turns knob button clockwise

Less knob-turning. More adaptations to your patient

To manage ventilation you usually have to set multiple parameters, such as pressure, volume, inspiratory and expiratory triggers, cuff pressure, and more. And each time your patient's condition changes, you have to make one or even several readjustments.

To simplify this process and reduce the knob-turning, we have created a range of solutions:

Adaptive Support Ventilation (ASV) is a ventilation mode that provides continuous adaptation of respiratory rate, tidal volume, and inspiratory time, depending on the patient’s lung mechanics and effort. ASV has been shown to shorten the duration of mechanical ventilation in various patient populations with fewer manual settings (Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-25992​, ​Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.0183​, Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.00000000000005894​).

Our intelligent ventilation mode INTELLiVENT-ASV promotes you from knob-turner to supervisor, reduces the number of manual interactions with the ventilator (Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-75​, Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 6​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000317​), and ensures individualized lung-protective ventilation for your patient (Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668. 6​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.000317​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0018​), from intubation to extubation.

IntelliSync+ continuously analyzes waveform signals at least one hundred times per second. This enables IntelliSync+ to detect patient efforts immediately and to initiate inspiration and expiration in real-time, thus replacing conventional trigger settings for inspiration and expiration.

Conventional solutions for cuff pressure management require you to monitor and adjust cuff pressure by hand.

IntelliCuff secures your patient’s airway (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033879​) by continuously measuring and automatically maintaining the set cuff pressure for adult, pediatric, and neonatal patients.

Patient in wheelchair with ventilator

Farewell ventilator! Tools to implement your weaning protocols

We want our ventilator to leave your patient’s side as quickly as possible. That is why we provide you with tools to help you implement your weaning protocol.

These include visual aids and ventilation modes designed to encourage spontaneous breathing.

Professionals looking into Hamilton Medical e-learnings

Get the hang of it! Learning paths and educational content

Our online Academy offers easy-to-follow learning paths to familiarize you with Hamilton Medical products and technologies as quickly as possible.

HAMILTON-S1

Go big or go home! The all-inclusive version.

The HAMILTON-S1 comes equipped with all the optional features, as well as INTELLiVENT-ASV.

For the future

Illustration of a compass pointing towards the future

Constant evolution. Expanding your ventilator’s capabilities

We are constantly working on further evolving our products. New features are added and existing features improved to ensure you always have access to the latest ventilation technology over your ventilator’s lifetime.

Hamilton ventilation family Hamilton ventilation family

Know one, know them all. A universal user interface

Whether it is in the ICU, in the MRI suite, or during transport, the user interface of all Hamilton Medical ventilators works in the same way.

Our Ventilation Cockpit integrates complex data into intuitive visualizations.

For the complete solution

Fully integrated accessories

We develop our accessories for the highest possible patient safety and ease of use in mind. Whenever possible, we integrate them with our ventilators to simplify operation of the complete ventilator system.

Our consumables

All Hamilton Medical Originals are designed for optimal performance with Hamilton Medical ventilators. To ensure maximum user satisfaction and patient safety, we strive for the highest quality and safety standards.

References

  1. 1. Neuschwander A, Chhor V, Yavchitz A, Resche-Rigon M, Pirracchio R. Automated weaning from mechanical ventilation: Results of a Bayesian network meta-analysis. J Crit Care. 2021;61:191-198. doi:10.1016/j.jcrc.2020.10.025
  2. 2. Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599
  3. 3. Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018
  4. 4. Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589
  5. 5. Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7
  6. 6. Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.
  7. 7. Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031

 

  1. 8. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001
  2. 9. Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387
  3. 100. Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.
  4. 101. Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815
  5. 102. Hess DR, Fink JB, Venkataraman ST, Kim IK, Myers TR, Tano BD. The history and physics of heliox. Respir Care. 2006;51(6):608-612.
  6. 103. Berkenbosch JW, Grueber RE, Graff GR, Tobias JD. Patterns of helium-oxygen (heliox) usage in the critical care environment. J Intensive Care Med. 2004;19(6):335-344. doi:10.1177/0885066604269670

Footnotes

  • a. Not available in all markets
  • b. Only available for HAMILTON-C6/G5/S1

 

  • c. IntelliCuff Auto mode not available in all markets
  • e. The HAMILTON-H900 is not approved for use during transport

Automated weaning from mechanical ventilation: Results of a Bayesian network meta-analysis.

Authors: Arthur Neuschwander, Vibol Chhor, Amélie Yavchitz, Matthieu Resche-Rigon, Romain Pirracchio

A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.

Authors: Cenk Kirakli, Ilknur Naz, Ozlem Ediboglu, Dursun Tatar, Ahmet Budak, Emel Tellioglu

A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.

Authors: M K P Tam, W T Wong, C D Gomersall, Q Tian, S K Ng, C C H Leung, M J Underwood

A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.

Authors: Fang Zhu, Charles D Gomersall, Siu Keung Ng, Malcolm J Underwood, Anna Lee

Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.

Authors: Ashley J R Beijers, Arnout N Roos, Alexander J G H Bindels

Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.

Authors: Emilie Bialais, Xavier Wittebole, Laurence Vignaux, Jean Roeseler, Marc Wysocki, Johannes Meyer, Gregory Reychler, Dominik Novotni, Thierry Sottiaux, Pierre F Laterre, Philippe Hantson

Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

Authors: Evgenia V Fot, Natalia N Izotova, Angelika S Yudina, Aleksei A Smetkin, Vsevolod V Kuzkov, Mikhail Y Kirov

Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.

Authors: Jean-Michel Arnal, Mathieu Saoli, Aude Garnero

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Authors: Christopher T Chenelle, Jun Oto, Demet Sulemanji, Daniel F Fisher, Robert M Kacmarek

New frontiers in aerosol delivery during mechanical ventilation.

Author: Rajiv Dhand

Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

Authors: J C Waldrep, R Dhand

The history and physics of heliox.

Authors: Dean R Hess, James B Fink, Shekhar T Venkataraman, In K Kim, Timothy R Myers, Benoit D Tano

Patterns of helium-oxygen (heliox) usage in the critical care environment.

Authors: John W Berkenbosch, Ryan E Grueber, Gavin R Graff, Joseph D Tobias