Back

リクルータビリティを評価するためのベッドサイドツール

Article

Author: Giorgio A. Iotti、Caroline Brown

Date of first publication: 29.04.2025

リクルータビリティとはどのようなもので、どうすれば測定できるのか

要点

  • 肺のさらなる損傷を避けながら十分な酸素化とCO2除去を確保することは、ARDS患者の治療における大きな課題のひとつです。
  • 適用するPEEPの適切なレベルは肺リクルートメントの可能性によって異なるため、リクルータビリティの程度を評価することはPEEP設定を決定するための指針となります。
  • リクルートメント対拡張比は、呼吸メカニクスの測定に基づいてリクルータビリティを測定する2つのベッドサイド法のうちの1つであり、人工呼吸器のモニタリングパラメータから計算できます。
  • R/I比が低いほどリクルートメントの可能性は低くなります。

肺のタイプとPEEPの効果

これら2つのボールをうまく扱うことが、ARDS患者の治療における大きな課題のひとつです。急性肺疾患では、肺胞は模式的に3つのグループに分けられます。それは、低い圧力でも開いた状態を維持できる安定した肺胞(正常な肺と同様)、虚脱しているが適度に安全な陽圧によって再び開くことができ、開いた状態を維持できる肺胞(リクルート可能な肺)、虚脱または硬化していて再び開くことができない肺胞(リクルート不可能な肺)です。これらのグループの相対的な割合に応じて、肺は機械的にほぼ正常、リクルート可能、またはリクルート不可能に分類できます。リクルート可能な肺の場合、適切なレベルの呼気終末陽圧(PEEP)でリクルートすることを目指して換気を行うと、肺の保護につながると考えられています。一方で、PEEPは吸気圧を押し上げるため、虚脱した肺胞のリクルートメントが促進され、肺が一回換気量を安全に受け入やすくなります。他方で、適切なレベルのPEEPは機械的安定剤として働き、呼気中の周期的な肺胞のデリクルートメントとその結果生じる無気肺に抵抗します。リクルート不可能な肺または機械的にほぼ正常な肺の場合は、状況が異なります。高いPEEPレベルは過剰であり、効果的でもありません。

ARDS患者でPEEPを設定する最も簡単な方法は、設定値を上げながら酸素化が十分に改善する値を探ることですが、この方法は「レスポンダー」にのみ有効であり、特にPEEPに良好に反応しない患者では過膨張につながる場合があります。リクルータビリティの測定は、適切なPEEPを見つけるための重要な追加情報をもたらす可能性があります。

リクルータビリティとはどのようなもので、どうすれば測定できるのか

しかし、リクルータビリティとはどのようなものでしょうか。肺胞の不安定性と、陽圧に反応する能力は、リクルータビリティの前提条件です。リクルートメントの可能性を持つ肺は、明らかにデリクルートメントの可能性も持ちます。つまり、気道内圧が特定のクロージングプレッシャー以下に下がると、不安定な肺胞が再び虚脱する可能性があります。 

ベッドサイドでリクルータビリティを評価する方法は、肺超音波検査や電気インピーダンス断層撮影による画像診断から、特定の手技中に実施される呼吸メカニクスの測定に基づくアプローチ(呼吸器系の静的気道内圧/ボリューム(PV)ループの分析とリクルートメント対拡張比(R/I))まで、多岐にわたります。どちらの方法にも侵襲的換気が必要であり、患者が完全にリラックスした状態にある必要があります。

静的PVループ

1つ目の方法の静的PVループとは、人工呼吸器に搭載された特殊なツールを使用して、ゆっくりとした制御された拡張および収縮手技中のボリュームの変化を気道内圧に対して記録するものです。一般的な手技では、2 cmH2O/sのゆっくりとした一定の速度で圧力を5 cmH2Oから40 cmH2Oまで上昇および下降させたときの呼吸器系を調べます。このやり方の代わりによく使われるのは、ゼロから開始してゼロで終了する方法です。実際には、これらのゆっくりとした手技によって一度に2つのことを調べることができます。それは、圧力レベルのゆっくりとした上昇によって肺胞が再開通(リクルートメント)する可能性と、圧力レベルのゆっくりとした下降に伴って肺胞が再虚脱(デリクルートメント)する可能性です。気道内圧をX軸、ボリュームをY軸とした手技プロットでは通常、吸気カーブと呼気カーブの間にヒステリシスがあります。これは呼気カーブが吸気カーブより高くなることを意味します。2つのカーブが離れるほど、ヒステリシスの度合いは高くなります。興味深いことに、ヒステリシスが大きい(ループが太い)ほどリクルートメントの可能性は高く、ヒステリシスが小さい(ループが細い)ほどリクルートメントの可能性は低いことがわかっています(Demory D, Arnal JM, Wysocki M, et al.Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients.Intensive Care Med.2008;34(11):2019-2025. doi:10.1007/s00134-008-1167-81​, Chiumello D, Arnal JM, Umbrello M, et al.Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study [published correction appears in Crit Care Med.2022 Mar 1;50(3):e339].Crit Care Med. 2020;48(10):1494-1502. doi:10.1097/CCM.00000000000045182)。ヒステリシスの度合いは、正規化最大距離(NMD)、つまり2本のカーブの最大距離と手技の最大ボリュームとの比率として表すことができます。NMDの値が0.41の場合、リクルータビリティは中程度であり、リクルートメントの可能性が高いか低いかを区別するのに役立ちます(Chiumello D, Arnal JM, Umbrello M, et al. Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study [published correction appears in Crit Care Med.2022 Mar 1;50(3):e339].Crit Care Med.2020;48(10):1494-1502. doi:10.1097/CCM.00000000000045182)。

リクルートメント対拡張比

2つ目の方法のリクルートメント対拡張比(R/I)は「簡易デリクルートメント法」とも呼ばれ、Chenらによって提唱されました(Chen L, Del Sorbo L, Grieco DL, et al.Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome.A Clinical Trial.Am J Respir Crit Care Med.2020;201(2):178-187. doi:10.1164/rccm.201902-0334OC3​, Chen L, Chen GQ, Shore K, et al.Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome.Crit Care.2017;21(1):84.Published 2017 Apr 4. doi:10.1186/s13054-017-1671-84​).この方法では、従来のボリュームコントロール換気(CMV)中に、少なくとも30分間高レベル(15~18 cmH2O)に維持していたPEEPを突然10 cmH2O下げて低レベル(5~8 cmH2O)にしたときにデリクルートメントが発生する可能性を調べます。高レベルのPEEPで吸気が始まり低レベルのPEEPで呼気が終わる遷移呼吸では、以前の呼吸と比較して呼気量が多くなります。この追加分の呼気量は、2つのまったく異なる要素で構成されます。1つ目の要素(「収縮量」と呼びます)は、低いPEEPレベルで安定した状態を保っている肺胞の収縮反応に左右されます。収縮量は、圧力の変化がベイビーラングの拡張(I)と収縮に及ぼす影響を探るもので、ベイビーラングのサイズに関係しています。2つ目の要素(「デリクルートメント量」と呼びます)は、PEEPが低レベルに切り替わるとすぐに虚脱して内部のガスを完全に放出する不安定な肺胞のデリクルートメントに左右されます。デリクルートメント量は、圧力の変化がリクルートメント(R)とデリクルートメントに及ぼす影響を探ります。R/I指数は、デリクルートメント量を収縮量で割った値に相当します。実際には、この指数は観察されたデリクルートメントをベイビーラングのサイズで正規化します。したがってこれは、リクルータビリティの程度を表します。 

R/I比の計算方法

R/I比の計算は比較的簡単で、人工呼吸器のモニタリングシステムで読み取り可能なデータ、つまり高レベルのPEEP時の呼気量、PEEP遷移呼吸中の呼気量、および低レベルのPEEP時の呼吸器系コンプライアンスに基づいています。R/I比が低いほどリクルートメントの可能性は低くなり、ゼロはリクルートメントの可能性がないことを示します。中間値は約0.5(Chenらが研究した集団の中央値)で、0.6を超えるとリクルータビリティが高いとみなされます(Chen L, Del Sorbo L, Grieco DL, et al.Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome.A Clinical Trial.Am J Respir Crit Care Med.2020;201(2):178-187. doi:10.1164/rccm.201902-0334OC3​).これらのR/I比を使用した結果が静的PVループのヒステリシスと比較され、良好な一致が認められました(Nakayama R, Bunya N, Katayama S, et al.Correlation between the hysteresis of the pressure-volume curve and the recruitment-to-inflation ratio in patients with coronavirus disease 2019.Ann Intensive Care.2022;12(1):106.Published 2022 Nov 12. doi:10.1186/s13613-022-01081-x5​). 

これらの結果からPEEPをどのように設定すればよいのか

単一の静的PVループのヒステリシスまたは10 cmH2Oのデリクルートメント手技でのR/I比によってリクルータビリティが高い、中程度、低いのいずれであるかを判定した後、臨床実践においてPEEPをどのように設定すればよいのでしょうか。リクルータビリティが低い場合は通常、低いPEEPを選択するのが適切です。リクルータビリティが高い場合は一般に高いPEEPを適用するのがよいと考えられていますが、この概念について最近提起された注意事項に留意することが重要です(Gattinoni L, Collino F, Camporota L. Assessing lung recruitability: does it help with PEEP settings?.Intensive Care Med.2024;50(5):749-751. doi:10.1007/s00134-024-07351-56)。では、リクルータビリティが中程度の場合はどうでしょうか。興味深いことに、不安定な肺胞をリクルートして機械的に安定させるのに最適なPEEPレベルを正確に評価する方法として、デクリメントPEEPトライアル中に複数の静的PVループのヒステリシス評価を行うことが提案されています(Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve.Curr Opin Crit Care.2024;30(1):35-42. doi:10.1097/MCC.00000000000011277)。同様に、R/I比アプローチもデクリメントPEEPトライアル中のデリクルートメントの詳細な評価に使用されていますが、この場合は窒素希釈によって呼気終末肺容量を測定しなければならないため、必要な技術の要求レベルが高くなります(Grieco DL, Pintaudi G, Bongiovanni F, et al.Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome.Anesthesiology.2023;139(6):801-814. doi:10.1097/ALN.00000000000047168​) 

人工呼吸器での実践

R/I比は、Hamilton Medical人工呼吸器の標準モニタリングパラメータを使用してベッドサイドでリクルータビリティの程度を評価する手段を提供します。もう1つの静的PVループを使用する方法は、HAMILTON-C3/C6およびHAMILTON-G5/S1人工呼吸器で使用可能なP/V Toolを使用して適用できます(HAMILTON-G5およびHAMILTON-C3/C6人工呼吸器ではオプション機能AHAMILTON-S1では標準機能B)。この場合、リクルータビリティは、1回の診断手技で得られたプレッシャー/ボリューム曲線から直接評価できます。P/V Toolは、リクルートメント手技の実施に加えて、複数回の診断手技から得られたヒステリシスの詳細な評価に基づいて最適なPEEP設定を見つけるためにも使用できます。
 

Footnotes

  • A. Available as an option on HAMILTON-G5 and HAMILTON-C3/C6 ventilators
  • B. Standard on the HAMILTON-S1

References

  1. 1. Demory D, Arnal JM, Wysocki M, et al. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008;34(11):2019-2025. doi:10.1007/s00134-008-1167-8
  2. 2. Chiumello D, Arnal JM, Umbrello M, et al. Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study [published correction appears in Crit Care Med. 2022 Mar 1;50(3):e339]. Crit Care Med. 2020;48(10):1494-1502. doi:10.1097/CCM.0000000000004518
  3. 3. Chen L, Del Sorbo L, Grieco DL, et al. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med. 2020;201(2):178-187. doi:10.1164/rccm.201902-0334OC
  4. 4. Chen L, Chen GQ, Shore K, et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care. 2017;21(1):84. Published 2017 Apr 4. doi:10.1186/s13054-017-1671-8
  5. 5. Nakayama R, Bunya N, Katayama S, et al. Correlation between the hysteresis of the pressure-volume curve and the recruitment-to-inflation ratio in patients with coronavirus disease 2019. Ann Intensive Care. 2022;12(1):106. Published 2022 Nov 12. doi:10.1186/s13613-022-01081-x
  6. 6. Gattinoni L, Collino F, Camporota L. Assessing lung recruitability: does it help with PEEP settings?. Intensive Care Med. 2024;50(5):749-751. doi:10.1007/s00134-024-07351-5
  7. 7. Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve. Curr Opin Crit Care. 2024;30(1):35-42. doi:10.1097/MCC.0000000000001127
  8. 8. Grieco DL, Pintaudi G, Bongiovanni F, et al. Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology. 2023;139(6):801-814. doi:10.1097/ALN.0000000000004716

Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients.

Demory D, Arnal JM, Wysocki M, et al. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008;34(11):2019-2025. doi:10.1007/s00134-008-1167-8

OBJECTIVE To assess the hysteresis of the pressure-volume curve (PV curve) as to estimate, easily and at the bedside, the recruitability of the lung in ARDS patients. DESIGN Prospective study. SETTING Twelve medico-surgical ICU beds of a general hospital. PATIENTS Twenty-six patients within the first 24 h from meeting ARDS criteria. INTERVENTION A Quasi-static inflation and deflation PV curve from 0 to 40 cmH(2)O and a 40 cmH(2)O recruitment maneuver (RM) maintained for 10 s were successively done with an interval of 30 min in between. RECORDINGS AND CALCULATION: Hysteresis of the PV curve (H(PV)) was calculated as the ratio of the area enclosed by the pressure volume loop divided by the predicted body weight (PBW). The volume increase during the RM (V(RM)) was measured by integration of the flow required to maintain the pressure at 40 cmH(2)O and divided by PBW, as an estimation of the volume recruited during the RM. RESULTS A positive linear correlation was found between H(PV) and V(RM) (r = 0.81, P < 0.0001). CONCLUSIONS The results suggest using the hysteresis of the PV curve to assess the recruitability of the lung.

Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study.

Chiumello D, Arnal JM, Umbrello M, et al. Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study [published correction appears in Crit Care Med. 2022 Mar 1;50(3):e339]. Crit Care Med. 2020;48(10):1494-1502. doi:10.1097/CCM.0000000000004518

OBJECTIVES Hysteresis of the respiratory system pressure-volume curve is related to alveolar surface forces, lung stress relaxation, and tidal reexpansion/collapse. Hysteresis has been suggested as a means of assessing lung recruitment. The objective of this study was to determine the relationship between hysteresis, mechanical characteristics of the respiratory system, and lung recruitment assessed by a CT scan in mechanically ventilated acute respiratory distress syndrome patients. DESIGN Prospective observational study. SETTING General ICU of a university hospital. PATIENTS Twenty-five consecutive sedated and paralyzed patients with acute respiratory distress syndrome (age 64 ± 15 yr, body mass index 26 ± 6 kg/m, PaO2/FIO2 147 ± 42, and positive end-expiratory pressure 9.3 ± 1.4 cm H2O) were enrolled. INTERVENTIONS A low-flow inflation and deflation pressure-volume curve (5-45 cm H2O) and a sustained inflation recruitment maneuver (45 cm H2O for 30 s) were performed. A lung CT scan was performed during breath-holding pressure at 5 cm H2O and during the recruitment maneuver at 45 cm H2O. MEASUREMENTS AND MAIN RESULTS Lung recruitment was computed as the difference in noninflated tissue and in gas volume measured at 5 and at 45 cm H2O. Hysteresis was calculated as the ratio of the area enclosed by the pressure-volume curve and expressed as the hysteresis ratio. Hysteresis was correlated with respiratory system compliance computed at 5 cm H2O and the lung gas volume entering the lung during inflation of the pressure-volume curve (R = 0.749, p < 0.001 and R = 0.851, p < 0.001). The hysteresis ratio was related to both lung tissue and gas recruitment (R = 0.266, p = 0.008, R = 0.357, p = 0.002, respectively). Receiver operating characteristic analysis showed that the optimal cutoff value to predict lung tissue recruitment for the hysteresis ratio was 28% (area under the receiver operating characteristic curve, 0.80; 95% CI, 0.62-0.98), with sensitivity and specificity of 0.75 and 0.77, respectively. CONCLUSIONS Hysteresis of the respiratory system computed by low-flow pressure-volume curve is related to the anatomical lung characteristics and has an acceptable accuracy to predict lung recruitment.

Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial.

Chen L, Del Sorbo L, Grieco DL, et al. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med. 2020;201(2):178-187. doi:10.1164/rccm.201902-0334OC

Rationale: Response to positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome depends on recruitability. We propose a bedside approach to estimate recruitability accounting for the presence of complete airway closure.Objectives: To validate a single-breath method for measuring recruited volume and test whether it differentiates patients with different responses to PEEP.Methods: Patients with acute respiratory distress syndrome were ventilated at 15 and 5 cm H2O of PEEP. Multiple pressure-volume curves were compared with a single-breath technique. Abruptly releasing PEEP (from 15 to 5 cm H2O) increases expired volume: the difference between this volume and the volume predicted by compliance at low PEEP (or above airway opening pressure) estimated the recruited volume by PEEP. This recruited volume divided by the effective pressure change gave the compliance of the recruited lung; the ratio of this compliance to the compliance at low PEEP gave the recruitment-to-inflation ratio. Response to PEEP was compared between high and low recruiters based on this ratio.Measurements and Main Results: Forty-five patients were enrolled. Four patients had airway closure higher than high PEEP, and thus recruitment could not be assessed. In others, recruited volume measured by the experimental and the reference methods were strongly correlated (R2 = 0.798; P < 0.0001) with small bias (-21 ml). The recruitment-to-inflation ratio (median, 0.5; range, 0-2.0) correlated with both oxygenation at low PEEP and the oxygenation response; at PEEP 15, high recruiters had better oxygenation (P = 0.004), whereas low recruiters experienced lower systolic arterial pressure (P = 0.008).Conclusions: A single-breath method quantifies recruited volume. The recruitment-to-inflation ratio might help to characterize lung recruitability at the bedside.Clinical trial registered with www.clinicaltrials.gov (NCT02457741).

Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome.

Chen L, Chen GQ, Shore K, et al. Implementing a bedside assessment of respiratory mechanics in patients with acute respiratory distress syndrome. Crit Care. 2017;21(1):84. Published 2017 Apr 4. doi:10.1186/s13054-017-1671-8

BACKGROUND Despite their potential interest for clinical management, measurements of respiratory mechanics in patients with acute respiratory distress syndrome (ARDS) are seldom performed in routine practice. We introduced a systematic assessment of respiratory mechanics in our clinical practice. After the first year of clinical use, we retrospectively assessed whether these measurements had any influence on clinical management and physiological parameters associated with clinical outcomes by comparing their value before and after performing the test. METHODS The respiratory mechanics assessment constituted a set of bedside measurements to determine passive lung and chest wall mechanics, response to positive end-expiratory pressure, and alveolar derecruitment. It was obtained early after ARDS diagnosis. The results were provided to the clinical team to be used at their own discretion. We compared ventilator settings and physiological variables before and after the test. The physiological endpoints were oxygenation index, dead space, and plateau and driving pressures. RESULTS Sixty-one consecutive patients with ARDS were enrolled. Esophageal pressure was measured in 53 patients (86.9%). In 41 patients (67.2%), ventilator settings were changed after the measurements, often by reducing positive end-expiratory pressure or by switching pressure-targeted mode to volume-targeted mode. Following changes, the oxygenation index, airway plateau, and driving pressures were significantly improved, whereas the dead-space fraction remained unchanged. The oxygenation index continued to improve in the next 48 h. CONCLUSIONS Implementing a systematic respiratory mechanics test leads to frequent individual adaptations of ventilator settings and allows improvement in oxygenation indexes and reduction of the risk of overdistention at the same time. TRIAL REGISTRATION The present study involves data from our ongoing registry for respiratory mechanics (ClinicalTrials.gov identifier: NCT02623192 . Registered 30 July 2015).

Correlation between the hysteresis of the pressure-volume curve and the recruitment-to-inflation ratio in patients with coronavirus disease 2019.

Nakayama R, Bunya N, Katayama S, et al. Correlation between the hysteresis of the pressure-volume curve and the recruitment-to-inflation ratio in patients with coronavirus disease 2019. Ann Intensive Care. 2022;12(1):106. Published 2022 Nov 12. doi:10.1186/s13613-022-01081-x

BACKGROUND Since the response to lung recruitment varies greatly among patients receiving mechanical ventilation, lung recruitability should be assessed before recruitment maneuvers. The pressure-volume curve (PV curve) and recruitment-to-inflation ratio (R/I ratio) can be used bedside for evaluating lung recruitability and individualing positive end-expiratory pressure (PEEP). Lung tissue recruitment on computed tomography has been correlated with normalized maximal distance (NMD) of the quasi-static PV curve. NMD is the maximal distance between the inspiratory and expiratory limb of the PV curve normalized to the maximal volume. However, the relationship between the different parameters of hysteresis of the quasi-static PV curve and R/I ratio for recruitability is unknown. METHODS We analyzed the data of 33 patients with severe coronavirus disease 2019 (COVID-19) who received invasive mechanical ventilation. Respiratory waveform data were collected from the ventilator using proprietary acquisition software. We examined the relationship of the R/I ratio, quasi-static PV curve items such as NMD, and respiratory system compliance (Crs). RESULTS The median R/I ratio was 0.90 [interquartile range (IQR), 0.70-1.15] and median NMD was 41.0 [IQR, 37.1-44.1]. The NMD correlated significantly with the R/I ratio (rho = 0.74, P < 0.001). Sub-analysis showed that the NMD and R/I ratio did not correlate with Crs at lower PEEP (- 0.057, P = 0.75; and rho = 0.15, P = 0.41, respectively). On the contrary, the ratio of Crs at higher PEEP to Crs at lower PEEP (Crs ratio (higher/lower)) moderately correlated with NMD and R/I ratio (rho = 0.64, P < 0.001; and rho = 0.67, P < 0.001, respectively). CONCLUSIONS NMD of the quasi-static PV curve and R/I ratio for recruitability assessment are highly correlated. In addition, NMD and R/I ratio correlated with the Crs ratio (higher/lower). Therefore, NMD and R/I ratio could be potential indicators of recruitability that can be performed at the bedside.

Assessing lung recruitability: does it help with PEEP settings?

Gattinoni L, Collino F, Camporota L. Assessing lung recruitability: does it help with PEEP settings?. Intensive Care Med. 2024;50(5):749-751. doi:10.1007/s00134-024-07351-5

Setting positive end-expiratory pressure: using the pressure-volume curve.

Mojoli F, Pozzi M, Arisi E. Setting positive end-expiratory pressure: using the pressure-volume curve. Curr Opin Crit Care. 2024;30(1):35-42. doi:10.1097/MCC.0000000000001127

PURPOSE OF REVIEW To discuss the role of pressure-volume curve (PV curve) in exploring elastic properties of the respiratory system and setting mechanical ventilator to reduce ventilator-induced lung injury. RECENT FINDINGS Nowadays, quasi-static PV curves and loops can be easily obtained and analyzed at the bedside without disconnection of the patient from the ventilator. It is shown that this tool can provide useful information to optimize ventilator setting. For example, PV curves can assess for patient's individual potential for lung recruitability and also evaluate the risk for lung injury of the ongoing mechanical ventilation setting. SUMMARY In conclusion, PV curve is an easily available bedside tool: its correct interpretation can be extremely valuable to enlighten potential for lung recruitability and select a high or low positive end-expiratory pressure (PEEP) strategy. Furthermore, recent studies have shown that PV curve can play a significant role in PEEP and driving pressure fine tuning: clinical studies are needed to prove whether this technique will improve outcome.

Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome.

Grieco DL, Pintaudi G, Bongiovanni F, et al. Recruitment-to-inflation Ratio Assessed through Sequential End-expiratory Lung Volume Measurement in Acute Respiratory Distress Syndrome. Anesthesiology. 2023;139(6):801-814. doi:10.1097/ALN.0000000000004716

BACKGROUND Positive end-expiratory pressure (PEEP) benefits in acute respiratory distress syndrome are driven by lung dynamic strain reduction. This depends on the variable extent of alveolar recruitment. The recruitment-to-inflation ratio estimates recruitability across a 10-cm H2O PEEP range through a simplified maneuver. Whether recruitability is uniform or not across this range is unknown. The hypotheses of this study are that the recruitment-to-inflation ratio represents an accurate estimate of PEEP-induced changes in dynamic strain, but may show nonuniform behavior across the conventionally tested PEEP range (15 to 5 cm H2O). METHODS Twenty patients with moderate-to-severe COVID-19 acute respiratory distress syndrome underwent a decremental PEEP trial (PEEP 15 to 13 to 10 to 8 to 5 cm H2O). Respiratory mechanics and end-expiratory lung volume by nitrogen dilution were measured the end of each step. Gas exchange, recruited volume, recruitment-to-inflation ratio, and changes in dynamic, static, and total strain were computed between 15 and 5 cm H2O (global recruitment-to-inflation ratio) and within narrower PEEP ranges (granular recruitment-to-inflation ratio). RESULTS Between 15 and 5 cm H2O, median [interquartile range] global recruitment-to-inflation ratio was 1.27 [0.40 to 1.69] and displayed a linear correlation with PEEP-induced dynamic strain reduction (r = -0.94; P < 0.001). Intraindividual recruitment-to-inflation ratio variability within the narrower ranges was high (85% [70 to 109]). The relationship between granular recruitment-to-inflation ratio and PEEP was mathematically described by a nonlinear, quadratic equation (R2 = 0.96). Granular recruitment-to-inflation ratio across the narrower PEEP ranges itself had a linear correlation with PEEP-induced reduction in dynamic strain (r = -0.89; P < 0.001). CONCLUSIONS Both global and granular recruitment-to-inflation ratio accurately estimate PEEP-induced changes in lung dynamic strain. However, the effect of 10 cm H2O of PEEP on lung strain may be nonuniform. Granular recruitment-to-inflation ratio assessment within narrower PEEP ranges guided by end-expiratory lung volume measurement may aid more precise PEEP selection, especially when the recruitment-to-inflation ratio obtained with the simplified maneuver between PEEP 15 and 5 cm H2O yields intermediate values that are difficult to interpret for a proper choice between a high and low PEEP strategy.

Related articles. Get a deeper look