我们检测到您正在 美国 访问我们的网站。
我们针对您的国家(美国)提供单独版本的网站。

切换至 美国
 产品

HAMILTON-C1。 体积小,性能高

HAMILTON-C1

我们的全能设备。在您需要的地方使用

  • ICU / PICU / NICU
  • 急诊室
  • 过渡监护室
  • 长期急性照护
  • 院内转运
HAMILTON-C1
HAMILTON-C1

我们的全能设备。 在您需要的地方使用

  • ICU / PICU / NICU
  • 急诊室
  • 过渡监护室
  • 长期急性照护
  • 院内转运
HAMILTON-C1

从最小到最大支持。 您的通气治疗选择

  • 高流量鼻导管治疗
  • 无创通气
  • 容量控制和压力控制通气模式
  • 带 ASV® 和 INTELLiVENT®-ASV 的适应性通气
HAMILTON-C1

超过 1000 个单词。 肺状况可视化

动态肺面板显示与实际呼吸同步的肺顺应性、气道阻力和病人触发。

HAMILTON-C1

湿化器控件和状态。 呼吸机显示屏上

从呼吸机显示屏上舒适、直接地操作 HAMILTON-H900 湿化器。 HAMILTON-H900 与呼吸机同步,并根据通气模式自动选择湿化模式。

HAMILTON-C1

极度独立。 无压缩空气且由电池供电

  • 高性能涡轮
  • 四小时电池续航时间
  • 氧气瓶支架
HAMILTON-C1
HAMILTON-C1
病人利用说话瓣膜选项进行通话。

我们谈话吧! 让您的病人说话

说话瓣膜选项让气管切开的病人说话,而且允许他们甚至在接受呼吸机通气治疗时吞咽。

调节呼吸机的监测、触发和报警管理,以在压力控制模式 (PCV+, SPONT, PSIMV+) 下与说话瓣膜兼容。

图:两名护士辅助插管病人步行。

越快越好。 早期活动

凭借高性能涡轮、电池、紧凑设计和先进的通气模式,HAMILTON-C1 还在病人旁边帮助病人期初下床活动。

想要查看更多信息?
探索 3D 模型

从各个角度发现 HAMILTON-C1,点击热点,以了解更多信息。

快速了解详情

  • 标配
  • 选项
  • 不可用
病人组 成人/儿童、新生儿
外形尺寸(宽x深x高) 310 x 210 x 245 mm(呼吸机主机)
630 x 630 x 1380 mm(含台车)
重量 4.9 kg(10.8 磅)
16.9 kg(37.3 磅)(含台车)
监视器尺寸和分辨率 214 mm(8.4 英寸)对角线
640 x 480 像素
可拆卸式监视器
电池运行时间 一块电池 4 小时
热插拔电池
气源 集成涡轮
O2 接头 DISS (CGA 1240) 或 NIST
连接 CO2/护士呼叫器/COM1,二氧化碳/SpO2/COM1,二氧化碳/SpO2/湿化器和 COM1,USB 端口,RJ-45 以太网端口
音量 43 dB(在正常运行情况下)
容量控制、流量控制
定量、适应性压力控制
智能通气 ASV®、INTELLiVENT®-ASV®(选项)
无创通气
高流量
肺力学指标可视化(动态肺)
病人呼吸机依赖性可视化
食道压测量
二氧化碳图
氧饱和度监测
肺复张性评估和肺复张 (P/V Tool Pro)
人机同步 (IntelliSync+)
CPR 通气
Hamilton Connect 模块
Hamilton Connect 应用
远程连接至 HAMILTON-H900 湿化器
集成 IntelliCuff 气囊压力控制器
集成气动雾化器
集成 Aerogen 雾化器
与 Sedaconda ACD-S 麻醉剂输送系统的兼容性
Ricky Williams

客户评语

我们还可以使用 HAMILTON-C1 进行 CPAP 和转运的事实是对于我们的机构性价比很高,而且减少工作人员的工作量。

Ricky Williams

RRT,呼吸治疗主任
美国华盛顿哥伦比亚特区国家港口 BridgePoint 医院

用于您的病人

智能通气解决方案概述

ASV® - Adaptive Support Ventilation®。 适用于全天候适应

根据病人的肺力学指标和呼吸用力,ASV 通气模式每天 24 时从插管到拔管连续调整每次呼吸时的呼吸频率、潮气量和吸气时间。

INTELLiVENT®-ASV。 适用于床旁辅助

INTELLiVENT-ASV 智能通气模式持续调整病人的通气和氧合状态。

它根据临床医生设定的目标值和病人的生理输入设置分钟通气量、PEEP 和氧浓度。

远程湿化器访问。 便于使用

通过独特的呼吸机连接选项可以直接从呼吸机的显示屏上操作 HAMILTON-H900 湿化器(HAMILTON-H900 不适用于转运。e)。您可以访问所有控件、监测参数和报警,并根据需要予以调节。

湿化器也可以根据所选的通气模式自动选择湿化模式(有创、无创或高流量)。

集成雾化器。 适用于额外治疗

集成气动雾化器完全与吸气和呼气时间同步。

集成同步 Aerogen 雾化系统作为一个选配件提供 (并非在所有市场均有提供a​, 仅适用于 HAMILTON-C6/G5/S1b​)。

输送药物气溶胶粒子的细水雾有助于您恢复支气管痉挛、提高通气效率和减少高碳酸血症 (Dhand R. New frontiers in aerosol delivery during mechanical ventilation.Respir Care.2004;49(6):666-677.100​, Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.Curr Drug Deliv.2008;5(2):114-119. doi:10.2174/156720108783954815101​)。

高流量鼻导管治疗。 适用于通气专家

高流量鼻导管治疗(也称为高流量氧疗。此术语可与高流量鼻导管治疗互换使用f​)可作为我们所有呼吸机上的一个选项提供。只需简单几步,即可更改界面,并且使用同一装置和呼吸管路来满足病人的治疗需求。

Hamilton Connect 应用。 适用于智能手机

Hamilton Connect 应用程序旨在满足现代医务人员的需求(Hamilton Connect 应用程序不能替代呼吸机上的实时数据显示。切勿使用该应用来补充或替代医院设备监测的任何部分。d​) 使您可以在您的移动设备上访问呼吸数据。它为您提供了旨在促进和简化通气工作流程的工具。

您只需要一个移动设备和一台带有 Hamilton Connect 模块的 Hamilton Medical 哈美顿医疗公司呼吸机。

说话瓣膜。 适用于“话匣子”

说话瓣膜选项让气管切开的病人说话,而且允许他们甚至在接受通气治疗时吞咽。

调节呼吸机的监测、触发和报警管理,以在压力控制模式 (PCV+, SPONT, PSIMV+) 下与说话瓣膜兼容。

容积二氧化碳图。 适用于 CO2ntrol 狂热爱好者

近端流速和二氧化碳测量使我们的呼吸机能生成最新的容积二氧化碳图,为评估通气质量和新陈代谢活动提供生要依据。

呼吸机状态面板。 适用于准备撤机者

通气状态面板显示与病人的呼吸机依赖性相关的六个参数,包括氧合状态、CO2 清除状态和病人活动。

各栏中上下移动的浮动指示器显示给定参数的当前值。

快速撤机。 适用于独立思考者

快速撤机是 INTELLiVENT-ASV 模式的一个功能,其可提供对病人状况的持续动态监测和控制,从而评估病人是否适于拔管。

动态肺面板。 使用目视监测者

动态肺面板向您显示下列重要监测数据的实时图表视图:

  • 顺应性和阻力
  • 病人触发
  • 氧饱和度
  • 脉率

可配置的环图和趋势图。 适用于统计员

呼吸机可根据所选的监测参数组合显示动态环图。有了趋势图功能,您可以看到针对您选择的监测参数和时间框所显示的趋势数据。 

设备持续将监测参数保存在其存储器中,即使在待机时也不停止。

脉搏血氧计。 适用于氧饱和度热衷者

氧饱和度选项提供集成无创氧饱和度测量,数据方便地显示在您的呼吸机上。

我们还提供氧饱和度传感器的全面组合方案。

高性能无创通气。 适用于面罩佩戴者

无创通气模式提供压力支持流速切换的自主呼吸(NIV 和 NIV-ST 模式)和压力控制时间切换的指令呼吸 (NIV-ST)。

与使用压缩空气的呼吸机相比,我们的涡轮驱动呼吸机能够提供更高的峰值流量。这就保证了即便漏气严重也具有最佳性能。

nCPAP 模式。 适用于小病人

nCPAP 模式的设计使您仅需设置期望的持续气道正压。之后,根据病人状况和潜在漏气调整流速。这就防止了意外峰值压力的产生,保证了高效的漏气补偿,并帮助减少了氧气消耗。由于压力测量灵敏度很高,流速的调整非常迅速。

为您提供

呼吸装置,同轴

预组装。 且可直接使用

我们预组装的呼吸装置包括操作呼吸机所需的基本耗材,而且方便地放在一个包装袋中。

我们的所有基本耗材都专门为保证制造商质量的 Hamilton Medical 哈美顿医疗公司呼吸机开发。

自动化;手动顺时针旋转旋钮

减少人工操作。 更适应您的病人

为管理通气,您通常需要设置多个参数,例如,压力、容量、吸气和呼气触发、气囊压力等。每次您的病人状况改变时,您需要进行一次或多次调节。

为简化此过程和减少人工操作,我们创建了一系列解决方案:

适应性支持通气 (ASV) 是一种根据病人的肺力学指标和呼吸用力连续适应呼吸频率、潮气量和吸气时间的通气模式。研究表明,ASV 可缩短各种人群的机械通气时间,而且手动设置更少 (Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.Chest.2015;147(6):1503-1509. doi:10.1378/chest.14-25991​, Tam MK, Wong WT, Gomersall CD, et al.A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.J Crit Care.2016;33:163-168. doi:10.1016/j.jcrc.2016.01.0182​, Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.Anesthesiology.2015;122(4):832-840. doi:10.1097/ALN.00000000000005893​).

我们的智能通气模式 INTELLiVENT-ASV 使您从操作者转变为监督者,减少与呼吸机手动互动的次数 (Beijers AJ, Roos AN, Bindels AJ.Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.Intensive Care Med.2014;40(5):752-753. doi:10.1007/s00134-014-3234-74​, Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.5​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. Doi:10.3389/fmed.2017.000316),以及确保为您的病人提供个性化肺保护通气 (Bialais E, Wittebole X, Vignaux L, et al.Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.Minerva Anestesiol.2016;82(6):657-668.5​, Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY.Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.Front Med (Lausanne).2017;4:31.Published 2017 Mar 21. doi:10.3389/fmed.2017.000316​, Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.Heart Lung.2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.0017),从插管到拔管。

气囊压力管理的常规解决方案需要您手动监测和调节气囊压力。

IntelliCuff 通过连续测量和自动维持所设置的成人、儿童和新生儿病人的气囊压力,安全管理病人的气道 (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM.Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.Respir Care.2015;60(2):183-190. doi:10.4187/respcare.033878)。

与触摸屏互动的专业人士

帮助随手可得! 屏幕上关于故障排除的帮助内容

无论何时出现问题,呼吸机都会利用报警灯、声音和信息栏警示您。

屏幕上的帮助内容向您提供有关如何解决报警的建议。

Hamilton Connect 应用

联系我。 无任何限制

Hamilton Connect 应用程序旨在满足现代医务人员的需求,使您可以访问呼吸数据。它为您提供了一个旨在促进和简化通气工作流程的解决方案。您只需要一个移动设备和一台带有 Hamilton Connect Module 的 Hamilton Medical 哈美顿医疗公司呼吸机(Hamilton Connect 应用程序不能替代呼吸机上的实时数据显示。切勿使用该应用来补充或替代医院设备监测的任何部分。A)。

坐在轮椅上接受呼吸机治疗的病人

撤离呼吸机! 实施撤机方案的工具

我们希望我们的呼吸机尽可能快速与病人脱离。因此我们向您提供工具帮助您实施您的撤机方案。

其中包括旨在鼓励自主呼吸的可视帮助和通气模式。

考察 Hamilton Medical 哈美顿医疗公司在线学习的专业人士

掌握窍门! 学习路径和教学内容

我们的在线学院提供易于遵循的学习路径,以使您尽快熟悉 Hamilton Medical 哈美顿医疗公司产品和技术。

Gail Spencer

客户评语

ASV 不仅帮助我的病人撤机,还减少手动调整次数,这样我有更多时间治疗病人。

Gail Spencer

RRT,高级呼吸治疗师
美国华盛顿哥伦比亚特区国家港口 BridgePoint 医院

面向未来

图:指向未来的指南针

不断革新。 扩展您的呼吸机的能力

我们不断努力进一步革新我们的产品。添加新的功能和改善现有功能,以确保您在您的呼吸机寿命期间始终拥有最新的通气技术。

如何使您的呼吸机保持最新
Hamilton 通气家族 Hamilton 通气家族

识一而知全部。 通用用户界面

无论用于 ICU、MRI 科室或病人转运,所有 Hamilton Medical 哈美顿医疗公司呼吸机的用户界面操作方式均相同。

我们的通气酷屏将复杂的数据集成到直观的可视化图像。

完整解决方案

完全集成的附件

我们围绕最高病人安全性和易用性开发我们的附件。我们尽可能将附件集成到我们的呼吸机,以简化整个呼吸机系统的操作。

我们的耗材

所有 Hamilton Medical 哈美顿医疗公司原装产品旨在与 Hamilton Medical 哈美顿医疗公司呼吸机配合提供最佳性能。为确保最大用户满意度和病人安全,我们努力符合最高的质量和安全标准。

参考文献

  1. 1. Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599
  2. 2. Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018
  3. 3. Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589
  4. 4. Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7
  5. 5. Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.

 

  1. 6. Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031
  2. 7. Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001
  3. 8. Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387
  4. 100. Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.
  5. 101. Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815

脚注

  • a. 并非在所有市场均有提供
  • b. 仅适用于 HAMILTON-C6/G5/S1
  • d. Hamilton Connect 应用程序不能替代呼吸机上的实时数据显示。切勿使用该应用来补充或替代医院设备监测的任何部分

 

  • e. HAMILTON-H900 不适用于转运
  • f. 也称为高流量氧疗。此术语可与高流量鼻导管治疗互换使用。

A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU.

Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E. A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest. 2015;147(6):1503-1509. doi:10.1378/chest.14-2599



BACKGROUND

Adaptive support ventilation (ASV) is a closed loop mode of mechanical ventilation (MV) that provides a target minute ventilation by automatically adapting inspiratory pressure and respiratory rate with the minimum work of breathing on the part of the patient. The aim of this study was to determine the effect of ASV on total MV duration when compared with pressure assist/control ventilation.

METHODS

Adult medical patients intubated and mechanically ventilated for > 24 h in a medical ICU were randomized to either ASV or pressure assist/control ventilation. Sedation and medical treatment were standardized for each group. Primary outcome was the total MV duration. Secondary outcomes were the weaning duration, number of manual settings of the ventilator, and weaning success rates.

RESULTS

Two hundred twenty-nine patients were included. Median MV duration until weaning, weaning duration, and total MV duration were significantly shorter in the ASV group (67 [43-94] h vs 92 [61-165] h, P = .003; 2 [2-2] h vs 2 [2-80] h, P = .001; and 4 [2-6] days vs 4 [3-9] days, P = .016, respectively). Patients in the ASV group required fewer total number of manual settings on the ventilator to reach the desired pH and Paco2 levels (2 [1-2] vs 3 [2-5], P < .001). The number of patients extubated successfully on the first attempt was significantly higher in the ASV group (P = .001). Weaning success and mortality at day 28 were comparable between the two groups.

CONCLUSIONS

In medical patients in the ICU, ASV may shorten the duration of weaning and total MV duration with a fewer number of manual ventilator settings.

TRIAL REGISTRY

ClinicalTrials.gov; No.: NCT01472302; URL: www.clinicaltrials.gov.

A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation.

Tam MK, Wong WT, Gomersall CD, et al. A randomized controlled trial of 2 protocols for weaning cardiac surgical patients receiving adaptive support ventilation. J Crit Care. 2016;33:163-168. doi:10.1016/j.jcrc.2016.01.018



PURPOSE

This study aims to compare the effectiveness of weaning with adaptive support ventilation (ASV) incorporating progressively reduced or constant target minute ventilation in the protocol in postoperative care after cardiac surgery.

MATERIAL AND METHODS

A randomized controlled unblinded study of 52 patients after elective coronary artery bypass surgery was carried out to determine whether a protocol incorporating a decremental target minute ventilation (DTMV) results in more rapid weaning of patients ventilated in ASV mode compared to a protocol incorporating a constant target minute ventilation.

RESULTS

Median duration of mechanical ventilation (145 vs 309 minutes; P = .001) and intubation (225 vs 423 minutes; P = .005) were significantly shorter in the DTMV group. There was no difference in adverse effects (42% vs 46%) or mortality (0% vs 0%) between the 2 groups.

CONCLUSIONS

Use of a DTMV protocol for postoperative ventilation of cardiac surgical patients in ASV mode results in a shorter duration of ventilation and intubation without evidence of increased risk of adverse effects.

A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery.

Zhu F, Gomersall CD, Ng SK, Underwood MJ, Lee A. A randomized controlled trial of adaptive support ventilation mode to wean patients after fast-track cardiac valvular surgery. Anesthesiology. 2015;122(4):832-840. doi:10.1097/ALN.0000000000000589



BACKGROUND

Adaptive support ventilation can speed weaning after coronary artery surgery compared with protocolized weaning using other modes. There are no data to support this mode of weaning after cardiac valvular surgery. Furthermore, control group weaning times have been long, suggesting that the results may reflect control group protocols that delay weaning rather than a real advantage of adaptive support ventilation.

METHODS

Randomized (computer-generated sequence and sealed opaque envelopes), parallel-arm, unblinded trial of adaptive support ventilation versus physician-directed weaning after adult fast-track cardiac valvular surgery. The primary outcome was duration of mechanical ventilation. Patients aged 18 to 80 yr without significant renal, liver, or lung disease or severe impairment of left ventricular function undergoing uncomplicated elective valve surgery were eligible. Care was standardized, except postoperative ventilation. In the adaptive support ventilation group, target minute ventilation and inspired oxygen concentration were adjusted according to blood gases. A spontaneous breathing trial was carried out when the total inspiratory pressure of 15 cm H2O or less with positive end-expiratory pressure of 5 cm H2O. In the control group, the duty physician made all ventilatory decisions.

RESULTS

Median duration of ventilation was statistically significantly shorter (P = 0.013) in the adaptive support ventilation group (205 [141 to 295] min, n = 30) than that in controls (342 [214 to 491] min, n = 31). Manual ventilator changes and alarms were less common in the adaptive support ventilation group, and arterial blood gas estimations were more common.

CONCLUSION

Adaptive support ventilation reduces ventilation time by more than 2 h in patients who have undergone fast-track cardiac valvular surgery while reducing the number of manual ventilator changes and alarms.

Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients.

Beijers AJ, Roos AN, Bindels AJ. Fully automated closed-loop ventilation is safe and effective in post-cardiac surgery patients. Intensive Care Med. 2014;40(5):752-753. doi:10.1007/s00134-014-3234-7

Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial.

Bialais E, Wittebole X, Vignaux L, et al. Closed-loop ventilation mode (IntelliVent®-ASV) in intensive care unit: a randomized trial. Minerva Anestesiol. 2016;82(6):657-668.



BACKGROUND

Closed-loop modes automatically adjust ventilation settings, delivering individualized ventilation over short periods of time. The objective of this randomized controlled trial was to compare safety, efficacy and workload for the health care team between IntelliVent®-ASV and conventional modes over a 48-hour period.

METHODS

ICU patients admitted with an expected duration of mechanical ventilation of more than 48 hours were randomized to IntelliVent®-ASV or conventional ventilation modes. All ventilation parameters were recorded breath-by-breath. The number of manual adjustments assesses workload for the healthcare team. Safety and efficacy were assessed by calculating the time spent within previously defined ranges of non-optimal and optimal ventilation, respectively.

RESULTS

Eighty patients were analyzed. The median values of ventilation parameters over 48 hours were similar in both groups except for PEEP (7[4] cmH2O versus 6[3] cmH2O with IntelliVent®-ASV and conventional ventilation, respectively, P=0.028) and PETCO2 (36±7 mmHg with IntelliVent®-ASV versus 40±8 mmHg with conventional ventilation, P=0.041). Safety was similar between IntelliVent®-ASV and conventional ventilation for all parameters except for PMAX, which was more often non-optimal with IntelliVent®-ASV (P=0.001). Efficacy was comparable between the 2 ventilation strategies, except for SpO2 and VT, which were more often optimal with IntelliVent®-ASV (P=0.005, P=0.016, respectively). IntelliVent®-ASV required less manual adjustments than conventional ventilation (P<0.001) for a higher total number of adjustments (P<0.001). The coefficient of variation over 48 hours was larger with IntelliVent®-ASV in regard of maximum pressure, inspiratory pressure (PINSP), and PEEP as compared to conventional ventilation.

CONCLUSIONS

IntelliVent®-ASV required less manual intervention and delivered more variable PEEP and PINSP, while delivering ventilation safe and effective ventilation in terms of VT, RR, SpO2 and PETCO2.

Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

Fot EV, Izotova NN, Yudina AS, Smetkin AA, Kuzkov VV, Kirov MY. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting. Front Med (Lausanne). 2017;4:31. Published 2017 Mar 21. doi:10.3389/fmed.2017.00031



BACKGROUND

The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode.

MATERIALS AND METHODS

Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning (n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning (n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm.

RESULTS AND DISCUSSION

Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group (p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group.

CONCLUSION

The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.

Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.

Arnal JM, Saoli M, Garnero A. Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients. Heart Lung. 2020;49(4):427-434. doi:10.1016/j.hrtlng.2019.11.001



BACKGROUND

Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation- induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT-ASV® is a closed-loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics.

OBJECTIVES

This prospective observational study investigated ΔP and MP (and also transpulmonary ΔP (ΔPL) and MP (MPL) for a subgroup of patients) delivered by INTELLiVENT-ASV.

METHODS

Adult patients admitted to the ICU were included if they were sedated and met the criteria for a single lung condition (normal lungs, COPD, or ARDS). INTELLiVENT-ASV was used with default target settings. If PEEP was above 16 cmH2O, the recruitment strategy used transpulmonary pressure as a reference, and ΔPL and MPL were computed. Measurements were made once for each patient.

RESULTS

Of the 255 patients included, 98 patients were classified as normal-lungs, 28 as COPD, and 129 as ARDS patients. The median ΔP was 8 (7 - 10), 10 (8 - 12), and 9 (8 - 11) cmH2O for normal-lungs, COPD, and ARDS patients, respectively. The median MP was 9.1 (4.9 - 13.5), 11.8 (8.6 - 16.5), and 8.8 (5.6 - 13.8) J/min for normal-lungs, COPD, and ARDS patients, respectively. For the 19 patients managed with transpulmonary pressure ΔPL was 6 (4 - 7) cmH2O and MPL was 3.6 (3.1 - 4.4) J/min.

CONCLUSIONS

In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2-h trial incorporating continuous mannikin head movement; and part 2, an 8-h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

New frontiers in aerosol delivery during mechanical ventilation.

Dhand R. New frontiers in aerosol delivery during mechanical ventilation. Respir Care. 2004;49(6):666-677.

The scientific basis for inhalation therapy in mechanically-ventilated patients is now firmly established. A variety of new devices that deliver drugs to the lung with high efficiency could be employed for drug delivery during mechanical ventilation. Encapsulation of drugs within liposomes could increase the amount of drug delivered, prolong the effect of a dose, and minimize adverse effects. With improved inhalation devices and surfactant formulations, inhaled surfactant could be employed for several indications in mechanically-ventilated patients. Research is unraveling the causes of some disorders that have been poorly understood, and our improved understanding of the causal mechanisms of various respiratory disorders will provide new applications for inhaled therapies.

Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation.

Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Deliv. 2008;5(2):114-119. doi:10.2174/156720108783954815

Recent technological advances and improved nebulizer designs have overcome many limitations of jet nebulizers. Newer devices employ a vibrating mesh or aperture plate (VM/AP) for the generation of therapeutic aerosols with consistent, increased efficiency, predominant aerosol fine particle fractions, low residuals, and the ability to nebulize even microliter volumes. These enhancements are achieved through several different design features and include improvements that promote patient compliance, such as compact design, portability, shorter treatment durations, and quiet operation. Current VM/AP devices in clinical use are the Omron MicroAir, the Nektar Aeroneb, and the Pari eFlow. However, some devices are only approved for use with specific medications. Development of "smart nebulizers" such as the Respironics I-neb couple VM technologies with coordinated delivery and optimized inhalation patterns to enhance inhaled drug delivery of specialized, expensive formulations. Ongoing development of advanced aerosol technologies should improve clinical outcomes and continue to expand therapeutic options as newer inhaled drugs become available.