Wir haben festgestellt, dass Sie unsere Website von Vereinigte Staaten aus besuchen.
Für Ihr Land (Vereinigte Staaten) gibt es eine eigene Version der Website.

Zu Vereinigte Staaten wechseln
 Technologien

IntelliSync®+. Behält die Synchronisation zwischen Patient und Beatmungsgerät im Auge

Menschliches Auge, das digitale Daten erfasst und verarbeitet

Wie können Asynchronien erkannt werden? Ein digitales Auge

Das geschulte Auge eines Beatmungsexperten ist in der Lage, Asynchronitäten zu erkennen, indem es die Kurvenformen der Flow- oder Druckkurven analysiert.

Der Zustand des Patienten kann sich jedoch von einem Atemzug auf den anderen verändern, und der Experte kann nicht ständig am Patientenbett sein.

An dieser Stelle kommt IntelliSync+ ins Spiel. Diese Technologie übernimmt die Funktion des Expertenauges und erkennt anhand der Kurven Anzeichen einer Atembemühung (Trigger) oder Entspannung (Einleiten der Exspiration) seitens des Patienten.

IntelliSync vorher – nachher

Wie funktioniert es? Die Prinzipien von IntelliSync+

IntelliSync+ analysiert die Kurvensignale kontinuierlich, und zwar mindestens einhundert Mal pro Sekunde. Dadurch kann IntelliSync+ Patientenanstrengungen sofort erkennen und Inspiration und Exspiration in Echtzeit initiieren. Somit sind herkömmliche Triggereinstellungen für Inspiration und Exspiration überflüssig.

Für maximale Flexibilität können Sie IntelliSync+ entweder für den inspiratorischen Trigger oder den exspiratorischen Trigger oder für beide aktivieren.

Grafische Darstellung: Patientenakte mit Lupe

Stellen Asynchronien wirklich ein Problem dar? Ein Blick auf die klinischen Erkenntnisse

Bei etwa 25 % aller maschinell beatmeter Patienten kommt es zu einer hohen Anzahl größerer Asynchronien zwischen Patient und Beatmungsgerät (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​). Sie werden mit einer erhöhten Atemarbeit (Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283-1289. doi:10.1164/rccm.200407-880OC2​), einer verlängerten Beatmungszeit (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​) und einer höheren Sterblichkeit in Verbindung gebracht (Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633-641. doi:10.1007/s00134-015-3692-63​).

Die Kurvenformanalyse ist eine zuverlässige, genaue und wiederholbare Methode zur Beurteilung der Interaktion zwischen Patient und Beatmungsgerät. Die Automatisierung dieser Methode kann eine kontinuierliche Überwachung von beatmeten Patienten und/oder eine Verbesserung der Atemtriggerung und Einleitung der Exspiration ermöglichen (Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054-016-1278-54​).

Automated cycling off for improved patient ventilator synchrony

Mojoli F, Orlando A, Bianchi IM, et al.

A recent study showed that automated control of ventilator cycling off based on real time analysis of waveforms provided a reliable means of improving synchronization in mechanically ventilated patients.

Display eines Beatmungsgerätes Display eines Beatmungsgerätes

Wie wird es verwendet? Einrichtung und Benutzung von IntelliSync+

IntelliSync+ ist eine durchwegs nichtinvasive Methode, für die keine zusätzliche Hardware oder Zubehör benötigt wird. Sie aktivieren einfach die Option an Ihrem Beatmungsgerät, um sie in invasiven und nichtinvasiven Beatmungsmodi bei erwachsenen und pädiatrischen Patienten einzusetzen.

Da IntelliSync+ auch mit herkömmlichen Triggern kombiniert werden kann, haben Sie die Wahl, IntelliSync+ entweder während der Inspiration, der Exspiration oder bei beiden zu verwenden.

Grafische Darstellung: Studentin hält ihr Diplom in der Hand

Gut zu wissen! Schulungsressourcen zu IntelliSync+

Übersichtskarte zu Asynchronien

Lernen Sie, gängige Asynchronien zu erkennen! Kostenlose Übersichtskarte

Unsere Übersichtskarte zu Asynchronien gibt Ihnen einen Überblick über die gängigsten Asynchronietypen, ihre Ursachen und wie Sie sie erkennen.

Verfügbarkeit

IntelliSync+ ist auf den Beatmungsgeräten HAMILTON-C6 und HAMILTON-G5 als Option verfügbar und gehört auf dem HAMILTON-S1 zu den Standardfunktionen.

Patient-ventilator asynchrony during assisted mechanical ventilation.

Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-8



OBJECTIVE

The incidence, pathophysiology, and consequences of patient-ventilator asynchrony are poorly known. We assessed the incidence of patient-ventilator asynchrony during assisted mechanical ventilation and we identified associated factors.

METHODS

Sixty-two consecutive patients requiring mechanical ventilation for more than 24 h were included prospectively as soon as they triggered all ventilator breaths: assist-control ventilation (ACV) in 11 and pressure-support ventilation (PSV) in 51.

MEASUREMENTS

Gross asynchrony detected visually on 30-min recordings of flow and airway pressure was quantified using an asynchrony index.

RESULTS

Fifteen patients (24%) had an asynchrony index greater than 10% of respiratory efforts. Ineffective triggering and double-triggering were the two main asynchrony patterns. Asynchrony existed during both ACV and PSV, with a median number of episodes per patient of 72 (range 13-215) vs. 16 (4-47) in 30 min, respectively (p=0.04). Double-triggering was more common during ACV than during PSV, but no difference was found for ineffective triggering. Ineffective triggering was associated with a less sensitive inspiratory trigger, higher level of pressure support (15 cmH(2)O, IQR 12-16, vs. 17.5, IQR 16-20), higher tidal volume, and higher pH. A high incidence of asynchrony was also associated with a longer duration of mechanical ventilation (7.5 days, IQR 3-20, vs. 25.5, IQR 9.5-42.5).

CONCLUSIONS

One-fourth of patients exhibit a high incidence of asynchrony during assisted ventilation. Such a high incidence is associated with a prolonged duration of mechanical ventilation. Patients with frequent ineffective triggering may receive excessive levels of ventilatory support.

Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload.

Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283-1289. doi:10.1164/rccm.200407-880OC



RATIONALE

During pressure-support ventilation, the ventilator cycles into expiration when inspiratory flow decreases to a given percentage of peak inspiratory flow ("expiratory trigger"). In obstructive disease, the slower rise and decrease of inspiratory flow entails delayed cycling, an increase in intrinsic positive end-expiratory pressure, and nontriggering breaths.

OBJECTIVES

We hypothesized that setting expiratory trigger at a higher than usual percentage of peak inspiratory flow would attenuate the adverse effects of delayed cycling.

METHODS

Ten intubated patients with obstructive disease undergoing pressure support were studied at expiratory trigger settings of 10, 25, 50, and 70% of peak inspiratory flow.

MEASUREMENTS

Continuous recording of diaphragmatic EMG activity with surface electrodes, and esophageal and gastric pressures with a dual-balloon nasogastric tube.

MAIN RESULTS

Compared with expiratory trigger 10, expiratory trigger 70 reduced the magnitude of delayed cycling (0.25 +/- 0.18 vs. 1.26 +/- 0.72 s, p < 0.05), intrinsic positive end-expiratory pressure (4.8 +/- 1.9 vs. 6.5 +/- 2.2 cm H(2)O, p < 0.05), nontriggering breaths (2 +/- 3 vs. 9 +/- 5 breaths/min, p < 0.05), and triggering pressure-time product (0.9 +/- 0.8 vs. 2.1 +/- 0.7 cm H2O . s, p < 0.05).

CONCLUSIONS

Setting expiratory trigger at a higher percentage of peak inspiratory flow in patients with obstructive disease during pressure support improves patient-ventilator synchrony and reduces inspiratory muscle effort. Further studies should explore whether these effects can influence patient outcome.

Asynchronies during mechanical ventilation are associated with mortality.

Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633-641. doi:10.1007/s00134-015-3692-6



PURPOSE

This study aimed to assess the prevalence and time course of asynchronies during mechanical ventilation (MV).

METHODS

Prospective, noninterventional observational study of 50 patients admitted to intensive care unit (ICU) beds equipped with Better Care™ software throughout MV. The software distinguished ventilatory modes and detected ineffective inspiratory efforts during expiration (IEE), double-triggering, aborted inspirations, and short and prolonged cycling to compute the asynchrony index (AI) for each hour. We analyzed 7,027 h of MV comprising 8,731,981 breaths.

RESULTS

Asynchronies were detected in all patients and in all ventilator modes. The median AI was 3.41 % [IQR 1.95-5.77]; the most common asynchrony overall and in each mode was IEE [2.38 % (IQR 1.36-3.61)]. Asynchronies were less frequent from 12 pm to 6 am [1.69 % (IQR 0.47-4.78)]. In the hours where more than 90 % of breaths were machine-triggered, the median AI decreased, but asynchronies were still present. When we compared patients with AI > 10 vs AI ≤ 10 %, we found similar reintubation and tracheostomy rates but higher ICU and hospital mortality and a trend toward longer duration of MV in patients with an AI above the cutoff.

CONCLUSIONS

Asynchronies are common throughout MV, occurring in all MV modes, and more frequently during the daytime. Further studies should determine whether asynchronies are a marker for or a cause of mortality.

In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable.

Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054-016-1278-5

In screening programmes it is important to assess a preliminary effectiveness of the screening method as soon as possible in order to forecast survival figures. In March 1981 a controlled single-view mammographic screening trial for breast cancer was started in the south of Stockholm. The population invited for screening mammography consisted of 40,000 women aged 40-64 years, and 20,000 women served as a well-defined control group. The main aim of the trial was to determine whether repeated mammographic screening could reduce the mortality in the study population (SP) compared to the control population (CP). The cumulative number of advanced mammary carcinomas in the screening and the control populations from the first five years of screening have shown a tendency towards more favourable stages in the screened population aged 40-64 years. A breakdown by age suggests an effect in age group 50-59 years, but not yet in age groups 40-49 and 60-64 years. When comparing the rates of stage II+ cancer, an increased number is found in the study group. As the total rate of breast cancer is higher in SP than in CP, there ought to be a concealed group of stage II+ cancers in the CP which makes the comparison biased. A new approach has been designed, where an estimation of the 'hidden' number of stage II+ cancers in CP is added to the clinically detected cases, and in this respect a comparison has shown a decrease in the cumulative number of advanced cancers in the SP in relation to the CP (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)