Volumetric capnography

  • Complements patient monitoring
  • Provides information about lung homogeneity or heterogeneity
  • Can be used for multiple clinical applications
  • Helps you optimize your ventilator settings
  • Easy to use

eBook

Sophisticated CO2 measurement

All Hamilton Medical ventilators provide volumetric capnography, either standard or as an optional feature. The CO2 measurement is performed using a CAPNOSTAT® 5 mainstream CO2 sensor at the patient‘s airway opening.

The CAPNOSTAT 5 sensor provides technologically advanced measurements of end-tidal carbon dioxide (PetCO2), respiratory rate, in addition to a clear, accurate capnogram at all respiratory rates up to 150 breaths per minute.

Volumetric capnogram on the display

The volumetric capnogram window on the display shows:

1) Current volumetric capnogram curve

2) Volumetric capnogram reference curve

3) Reference curve button with time and date of reference loop

4) Most relevant CO2 values, breath by breath

72-hour trend function

To allow a more comprehensive analysis of the patient condition, a 72-hour trend (or 96-hour with HAMILTON-S1/G5) is available for:

PetCO2, V‘CO2, FetCO2, VeCO2, ViCO2, VTE/Vtalv,  VDaw, VD/Vt, Slope CO2

Volumetric capnography in monitoring

To make your life easier, Hamilton Medical ventilators offer an overview of all relevant CO2-related values in the Monitoring CO2 window.

eBook on volumetric capnography

Learn how to interpret a volumetric capnogram and get an overview of the benefits and the clinical applications of volumetric capnography. Includes a self-test!

Download the eBook

Downloads

CO2 measurement

Volumetric capnography user guide

PDF / 1.5 MB

10107270

EN, DE, FR, ES, IT, PT, JA, ZH, RU

References

Anderson JT, Owings JT, Goodnight JE. Bedside noninvasive detection of acute pulmonary embolism in critically ill surgical patients. Arch Surg 1999; 134(8):869–874; discussion 874–875.

Astrom E, Niklason L, Drefeldt B, Bajc M, Jonson B. Partitioning of dead space – a method and reference values in the awake human. Eur Respir J. 2000 Oct; 16(4):659-664.

Blanch L, Romero PV, Lucangelo U. Volumetric capnography in the mechanically ventilated patient. Minerva Anestesiol. 2006 Jun;72(6):577-85.

Erikson, L, Wollmer, P, Olsson, CG, et al. Diagnosis of pulmonary embolism based upon alveolar dead space analysis. Chest 1989;96,357-362.

Fletcher R. The single breath test for carbon dioxide [dissertation]. Lund, Sweden: University of Lund, 1980. 2nd edition revised and reprinted, Solna, Sweden:Siemens Elema, 1986.

Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005 Apr;50(4):462-7.

Kumar AY, Bhavani-Shankar K, Moseley HS, Delph Y. Inspiratory valve malfunction in a circle system: pitfalls in capnography. Can J Anaesth 1992;39(9):997–999.

Olsson K, Jonson B, Olsson CG, Wollmer P. Diagnosis of pulmonary embolism by measurement of alveolar dead space. J Intern Med. 1998 Sep;244(3):199-207.

Pyles ST, Berman LS, Modell JH. Expiratory valve dysfunction in a semiclosed circle anesthesia circuit: verification by analysis of carbon dioxide waveform. Anesth Analg 1984;63(5):536–537.

Rodger MA, Jones G, Rasuli P, Raymond F, Djunaedi H, Bredeson CN, Wells PS. Steady-state end-tidal alveolar dead space fraction and D-dimer: bedside tests to exclude pulmonary embolism. Chest 2001;120(1):115–119.

Yaron M, Padyk P, Hutsinpiller M, Cairns CB. Utility of the expiratory capnogram in the assessment of bronchospasm. Ann Emerg Med. 1996 Oct;28(4):403-7.

Wolff G, Brunner JX, Weibel W, et al. Anatomical and series dead space volume: concept and measurement in clinical practice. Appl Cardiopul Pathophysiol 1989; 2:299-307.