Nous avons remarqué que vous aviez visité notre site internet depuis le pays États-Unis.
Nous proposons une version du site internet propre à votre pays (États-Unis).

Passer à États-Unis
 Technologies

IntelliSync®+. Garder un œil sur la synchronie patient-ventilateur

Un œil humain qui capture et traite les données numériques

Comment détecter des asynchronies ? Un œil digital

L'œil exercé d'un expert de la ventilation est capable de détecter des asynchronies en analysant les formes d'ondes de débit et de pression.

Cependant, l'expert ne peut pas toujours être au chevet du patient et l'état du patient peut changer d'un cycle à l'autre.

C'est là qu'intervient l'IntelliSync+. Cette technologie imite l'œil de l'expert pour identifier les signes des efforts du patient (déclenchement) ou de relâchement (cyclage) sur la forme d'ondes.

IntelliSync avant et après

Comment cela fonctionne-t-il ? Principes de l'IntelliSync+

L'IntelliSync+ analyse en continu des signaux de formes d'ondes plusieurs centaines de fois par seconde. L'IntelliSync+ peut alors détecter immédiatement les efforts du patient et initier l'inspiration et l'expiration en temps réel, remplaçant ainsi les réglages de déclenchement classiques de l'inspiration et de l'expiration.

Pour une flexibilité optimale, vous pouvez choisir d'activer l'IntelliSync+ pour le déclenchement inspiratoire ou le déclenchement expiratoire, ou bien les deux.

Image : dossier de patient avec loupe

Les asynchronies sont-elles vraiment un problème ? Focus sur les preuves de réussite

Des asynchronies patient-ventilateur importantes sont détectées chez environ 25 % de l'ensemble des patients ventilés mécaniquement (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​). Elles sont associées à une augmentation du travail respiratoire (Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283-1289. doi:10.1164/rccm.200407-880OC2​), à une durée de ventilation prolongée (Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-81​) et à une mortalité plus élevée (Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633-641. doi:10.1007/s00134-015-3692-63​).

L'analyse des formes d'ondes est une méthode fiable, précise et reproductible permettant d'évaluer l'interaction entre le patient et le ventilateur. L'automatisation de cette méthode peut permettre un monitorage continu des patients ventilés et/ou améliorer le déclenchement des cycles et le cyclage (Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054-016-1278-54​).

Automated cycling off for improved patient ventilator synchrony

Mojoli F, Orlando A, Bianchi IM, et al.

A recent study showed that automated control of ventilator cycling off based on real time analysis of waveforms provided a reliable means of improving synchronization in mechanically ventilated patients.

Écran de ventilateur Écran de ventilateur

Comment l'utilisez-vous ? Configuration et utilisation de l'IntelliSync+

L'IntelliSync+ est une méthode totalement non invasive qui ne nécessite ni matériel ni accessoire supplémentaire. Il vous suffit d'activer l'option sur votre ventilateur pour l'utiliser en mode de ventilation invasif ou non invasif sur des patients adultes et enfants.

Comme l'IntelliSync+ peut également être combiné avec des déclenchements classiques, vous pouvez choisir de l'utiliser pendant l'inspiration, l'expiration, ou les deux.

Image : étudiante brandissant un diplôme

Bon à savoir ! Supports de formation sur l'IntelliSync+

Carte de référence des asynchronies

Apprendre à repérer les asynchronies courantes ! Carte de référence gratuite

Notre carte de référence des asynchronies fournit un aperçu des types d'asynchronies les plus courantes, leurs causes et comment les détecter.

Disponibilité

L'IntelliSync+ est disponible en option sur le HAMILTON-C6 et le HAMILTON-G5, et comme fonctionnalité standard sur le HAMILTON-S1.

Patient-ventilator asynchrony during assisted mechanical ventilation.

Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522. doi:10.1007/s00134-006-0301-8



OBJECTIVE

The incidence, pathophysiology, and consequences of patient-ventilator asynchrony are poorly known. We assessed the incidence of patient-ventilator asynchrony during assisted mechanical ventilation and we identified associated factors.

METHODS

Sixty-two consecutive patients requiring mechanical ventilation for more than 24 h were included prospectively as soon as they triggered all ventilator breaths: assist-control ventilation (ACV) in 11 and pressure-support ventilation (PSV) in 51.

MEASUREMENTS

Gross asynchrony detected visually on 30-min recordings of flow and airway pressure was quantified using an asynchrony index.

RESULTS

Fifteen patients (24%) had an asynchrony index greater than 10% of respiratory efforts. Ineffective triggering and double-triggering were the two main asynchrony patterns. Asynchrony existed during both ACV and PSV, with a median number of episodes per patient of 72 (range 13-215) vs. 16 (4-47) in 30 min, respectively (p=0.04). Double-triggering was more common during ACV than during PSV, but no difference was found for ineffective triggering. Ineffective triggering was associated with a less sensitive inspiratory trigger, higher level of pressure support (15 cmH(2)O, IQR 12-16, vs. 17.5, IQR 16-20), higher tidal volume, and higher pH. A high incidence of asynchrony was also associated with a longer duration of mechanical ventilation (7.5 days, IQR 3-20, vs. 25.5, IQR 9.5-42.5).

CONCLUSIONS

One-fourth of patients exhibit a high incidence of asynchrony during assisted ventilation. Such a high incidence is associated with a prolonged duration of mechanical ventilation. Patients with frequent ineffective triggering may receive excessive levels of ventilatory support.

Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload.

Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283-1289. doi:10.1164/rccm.200407-880OC



RATIONALE

During pressure-support ventilation, the ventilator cycles into expiration when inspiratory flow decreases to a given percentage of peak inspiratory flow ("expiratory trigger"). In obstructive disease, the slower rise and decrease of inspiratory flow entails delayed cycling, an increase in intrinsic positive end-expiratory pressure, and nontriggering breaths.

OBJECTIVES

We hypothesized that setting expiratory trigger at a higher than usual percentage of peak inspiratory flow would attenuate the adverse effects of delayed cycling.

METHODS

Ten intubated patients with obstructive disease undergoing pressure support were studied at expiratory trigger settings of 10, 25, 50, and 70% of peak inspiratory flow.

MEASUREMENTS

Continuous recording of diaphragmatic EMG activity with surface electrodes, and esophageal and gastric pressures with a dual-balloon nasogastric tube.

MAIN RESULTS

Compared with expiratory trigger 10, expiratory trigger 70 reduced the magnitude of delayed cycling (0.25 +/- 0.18 vs. 1.26 +/- 0.72 s, p < 0.05), intrinsic positive end-expiratory pressure (4.8 +/- 1.9 vs. 6.5 +/- 2.2 cm H(2)O, p < 0.05), nontriggering breaths (2 +/- 3 vs. 9 +/- 5 breaths/min, p < 0.05), and triggering pressure-time product (0.9 +/- 0.8 vs. 2.1 +/- 0.7 cm H2O . s, p < 0.05).

CONCLUSIONS

Setting expiratory trigger at a higher percentage of peak inspiratory flow in patients with obstructive disease during pressure support improves patient-ventilator synchrony and reduces inspiratory muscle effort. Further studies should explore whether these effects can influence patient outcome.

Asynchronies during mechanical ventilation are associated with mortality.

Blanch L, Villagra A, Sales B, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41(4):633-641. doi:10.1007/s00134-015-3692-6



PURPOSE

This study aimed to assess the prevalence and time course of asynchronies during mechanical ventilation (MV).

METHODS

Prospective, noninterventional observational study of 50 patients admitted to intensive care unit (ICU) beds equipped with Better Care™ software throughout MV. The software distinguished ventilatory modes and detected ineffective inspiratory efforts during expiration (IEE), double-triggering, aborted inspirations, and short and prolonged cycling to compute the asynchrony index (AI) for each hour. We analyzed 7,027 h of MV comprising 8,731,981 breaths.

RESULTS

Asynchronies were detected in all patients and in all ventilator modes. The median AI was 3.41 % [IQR 1.95-5.77]; the most common asynchrony overall and in each mode was IEE [2.38 % (IQR 1.36-3.61)]. Asynchronies were less frequent from 12 pm to 6 am [1.69 % (IQR 0.47-4.78)]. In the hours where more than 90 % of breaths were machine-triggered, the median AI decreased, but asynchronies were still present. When we compared patients with AI > 10 vs AI ≤ 10 %, we found similar reintubation and tracheostomy rates but higher ICU and hospital mortality and a trend toward longer duration of MV in patients with an AI above the cutoff.

CONCLUSIONS

Asynchronies are common throughout MV, occurring in all MV modes, and more frequently during the daytime. Further studies should determine whether asynchronies are a marker for or a cause of mortality.

In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable.

Mojoli F, Iotti GA, Torriglia F, et al. In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care. 2016;20:98. Published 2016 Apr 11. doi:10.1186/s13054-016-1278-5

In screening programmes it is important to assess a preliminary effectiveness of the screening method as soon as possible in order to forecast survival figures. In March 1981 a controlled single-view mammographic screening trial for breast cancer was started in the south of Stockholm. The population invited for screening mammography consisted of 40,000 women aged 40-64 years, and 20,000 women served as a well-defined control group. The main aim of the trial was to determine whether repeated mammographic screening could reduce the mortality in the study population (SP) compared to the control population (CP). The cumulative number of advanced mammary carcinomas in the screening and the control populations from the first five years of screening have shown a tendency towards more favourable stages in the screened population aged 40-64 years. A breakdown by age suggests an effect in age group 50-59 years, but not yet in age groups 40-49 and 60-64 years. When comparing the rates of stage II+ cancer, an increased number is found in the study group. As the total rate of breast cancer is higher in SP than in CP, there ought to be a concealed group of stage II+ cancers in the CP which makes the comparison biased. A new approach has been designed, where an estimation of the 'hidden' number of stage II+ cancers in CP is added to the clinically detected cases, and in this respect a comparison has shown a decrease in the cumulative number of advanced cancers in the SP in relation to the CP (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)