State accedendo al sito dal Paese Stati Uniti.
Per il vostro Paese (Stati Uniti) è disponibile anche una versione dedicata del sito.

Passare a Stati Uniti
 Tecnologie

IntelliCuff®: controller automatico della pressione di cuffia

Gestione manuale della pressione di cuffia

Un compito costante: la regolazione continua della pressione di cuffia

Le soluzioni convenzionali per la gestione della pressione di cuffia richiedono di monitorarla e regolarla manualmente.

Possono essere necessarie anche otto regolazioni al giorno per mantenere la pressione di cuffia sempre all'interno dell'intervallo desiderato (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871).

Dispositivo autonomo IntelliCuff

C'è una soluzione semplice: il controllo automatico della pressione di cuffia

IntelliCuff protegge le vie aeree del paziente (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871) misurando costantemente la pressione di cuffia ed eseguendo automaticamente le regolazioni necessarie per mantenere quella impostata per pazienti adulti, pediatrici e neonatali.

È possibile utilizzarlo sia come dispositivo autonomo da associare a tutti i ventilatori meccanici, sia come soluzione integrata per i modelli HAMILTON-C6 e HAMILTON-G5/S1.

Tubo pressione di cuffia

Come funziona? I principi alla base di IntelliCuff

È sufficiente impostare la pressione di cuffia desiderata: IntelliCuff prende il controllo per monitorare costantemente e mantenere la pressione impostata. La pressione misurata nella cuffia è visualizzata come valore di monitoraggio.

Nell'eventualità che la cuffia sia danneggiata, IntelliCuff genera un allarme e continua a compensare la perdita per mantenere ferme le vie aeree.

Sandra Rupp

Cosa dicono i clienti

Utilizziamo IntelliCuff come funzione standard per contribuire a evitare la VAP nei pazienti sottoposti a ventilazione meccanica. IntelliCuff controlla automaticamente e regolarmente la pressione di cuffia. È di grande aiuto al personale assistenziale, perché non dobbiamo controllare personalmente la pressione di cuffia ogni ora.

Sandra Rupp

Responsabile infermeria di terapia intensiva
Ospedale cantonale dei Grigioni, Coira, Svizzera

Grafico con statistiche: Lorente L. Crit Care. 2014 Apr 21;18(2):R77.

Ma è davvero sicuro? Uno sguardo alle prove

L'utilizzo di un sistema di controllo continuo della pressione di cuffia come IntelliCuff è più efficace nel mantenere la pressione di cuffia all'interno di un intervallo ottimale (Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.033871), e contribuisce a ridurre la microaspirazione e la polmonite indotta dal ventilatore (Lorente L, Lecuona M, Jiménez A, et al. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014;18(2):R77. Pubblicato il 21 aprile 2014. doi:10.1186/cc138372​, Nseir S, Zerimech F, Fournier C, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184(9):1041-1047. doi:10.1164/rccm.201104-0630OC3).

Per evitare lesioni tracheali e ulcere da pressione, IntelliCuff ha un'impostazione predefinita per la pressione di cuffia pari a 25 cmH2O (Wang R, Sun B, Li X, et al. Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med. 2020;48(9):1280-1288. doi:10.1097/CCM.00000000000044454).

Illustrazione: studenti che lanciano in aria i cappelli

Buono a sapersi! Risorse per la formazione su IntelliCuff

Accessori e prodotti di consumo

Disponibilità

IntelliCuff è disponibile come dispositivo autonomo per tutti i ventilatori o come soluzione integrata opzionale sui modelli HAMILTON-C6 e HAMILTON-G5; è inoltre di serie sul ventilatore HAMILTON-S1.

Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation.

Chenelle CT, Oto J, Sulemanji D, Fisher DF, Kacmarek RM. Evaluation of an automated endotracheal tube cuff controller during simulated mechanical ventilation. Respir Care. 2015;60(2):183-190. doi:10.4187/respcare.03387



BACKGROUND

Maintaining endotracheal tube cuff pressure within a narrow range is an important factor in patient care. The goal of this study was to evaluate the IntelliCuff against the manual technique for maintaining cuff pressure during simulated mechanical ventilation with and without movement.

METHODS

The IntelliCuff was compared to the manual technique of a manometer and syringe. Two independent studies were performed during mechanical ventilation: part 1, a 2-h trial incorporating continuous mannikin head movement; and part 2, an 8-h trial using a stationary trachea model. We set cuff pressure to 25 cm H2O, PEEP to 10 cm H2O, and peak inspiratory pressures to 20, 30, and 40 cm H2O. Clinical importance was defined as both statistically significant (P<.05) and clinically significant (pressure change [Δ]>10%).

RESULTS

In part 1, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P<.001, Δ=-39.6%) but not for the IntelliCuff (P=.02, Δ=3.5%). In part 2, the change in cuff pressure from before to after ventilation was clinically important for the manual technique (P=.004, Δ=-14.39%) but not for the IntelliCuff (P=.20, Δ=5.65%).

CONCLUSIONS

There was a clinically important drop in manually set cuff pressure during simulated mechanical ventilation in a stationary model and an even larger drop with movement, but this was significantly reduced by the IntelliCuff in both scenarios. Additionally, we observed that cuff pressure varied directly with inspiratory airway pressure for both techniques, leading to elevated average cuff pressures.

Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia.

Lorente L, Lecuona M, Jiménez A, et al. Continuous endotracheal tube cuff pressure control system protects against ventilator-associated pneumonia. Crit Care. 2014;18(2):R77. Published 2014 Apr 21. doi:10.1186/cc13837



INTRODUCTION

The use of a system for continuous control of endotracheal tube cuff pressure reduced the incidence of ventilator-associated pneumonia (VAP) in one randomized controlled trial (RCT) with 112 patients but not in another RCT with 142 patients. In several guidelines on the prevention of VAP, the use of a system for continuous or intermittent control of endotracheal cuff pressure is not reviewed. The objective of this study was to compare the incidence of VAP in a large sample of patients (n = 284) treated with either continuous or intermittent control of endotracheal tube cuff pressure.

METHODS

We performed a prospective observational study of patients undergoing mechanical ventilation during more than 48 hours in an intensive care unit (ICU) using either continuous or intermittent endotracheal tube cuff pressure control. Multivariate logistic regression analysis (MLRA) and Cox proportional hazard regression analysis were used to predict VAP. The magnitude of the effect was expressed as odds ratio (OR) or hazard ratio (HR), respectively, and 95% confidence interval (CI).

RESULTS

We found a lower incidence of VAP with the continuous (n = 150) than with the intermittent (n = 134) pressure control system (22.0% versus 11.2%; p = 0.02). MLRA showed that the continuous pressure control system (OR = 0.45; 95% CI = 0.22-0.89; p = 0.02) and the use of an endotracheal tube incorporating a lumen for subglottic secretion drainage (SSD) (OR = 0.39; 95% CI = 0.19-0.84; p = 0.02) were protective factors against VAP. Cox regression analysis showed that the continuous pressure control system (HR = 0.45; 95% CI = 0.24-0.84; p = 0.01) and the use of an endotracheal tube incorporating a lumen for SSD (HR = 0.29; 95% CI = 0.15-0.56; p < 0.001) were protective factors against VAP. However, the interaction between type of endotracheal cuff pressure control system (continuous or intermittent) and endotracheal tube (with or without SSD) was not statistically significant in MLRA (OR = 0.41; 95% CI = 0.07-2.37; p = 0.32) or in Cox analysis (HR = 0.35; 95% CI = 0.06-1.84; p = 0.21).

CONCLUSIONS

The use of a continuous endotracheal cuff pressure control system and/or an endotracheal tube with a lumen for SSD could help to prevent VAP in patients requiring more than 48 hours of mechanical ventilation.

Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients.

Nseir S, Zerimech F, Fournier C, et al. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184(9):1041-1047. doi:10.1164/rccm.201104-0630OC



RATIONALE

Underinflation of the tracheal cuff frequently occurs in critically ill patients and represents a risk factor for microaspiration of contaminated oropharyngeal secretions and gastric contents that plays a major role in the pathogenesis of ventilator-associated pneumonia (VAP).

OBJECTIVES

To determine the impact of continuous control of tracheal cuff pressure (P(cuff)) on microaspiration of gastric contents.

METHODS

Prospective randomized controlled trial performed in a single medical intensive care unit. A total of 122 patients expected to receive mechanical ventilation for at least 48 hours through a tracheal tube were randomized to receive continuous control of P(cuff) using a pneumatic device (intervention group, n = 61) or routine care of P(cuff) (control group, n = 61).

MEASUREMENTS AND MAIN RESULTS

The primary outcome was microaspiration of gastric contents as defined by the presence of pepsin at a significant level in tracheal secretions collected during the 48 hours after randomization. Secondary outcomes included incidence of VAP, tracheobronchial bacterial concentration, and tracheal ischemic lesions. The pneumatic device was efficient in controlling P(cuff). Pepsin was measured in 1,205 tracheal aspirates. Percentage of patients with abundant microaspiration (18 vs. 46%; P = 0.002; OR [95% confidence interval], 0.25 [0.11-0.59]), bacterial concentration in tracheal aspirates (mean ± SD 1.6 ± 2.4 vs. 3.1 ± 3.7 log(10) cfu/ml, P = 0.014), and VAP rate (9.8 vs. 26.2%; P = 0.032; 0.30 [0.11-0.84]) were significantly lower in the intervention group compared with the control group. However, no significant difference was found in tracheal ischemia score between the two groups.

CONCLUSIONS

Continuous control of P(cuff) is associated with significantly decreased microaspiration of gastric contents in critically ill patients.

Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation.

Wang R, Sun B, Li X, et al. Mechanical Ventilation Strategy Guided by Transpulmonary Pressure in Severe Acute Respiratory Distress Syndrome Treated With Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med. 2020;48(9):1280-1288. doi:10.1097/CCM.0000000000004445



OBJECTIVES

Previous studies have suggested that adjusting ventilator settings based on transpulmonary pressure measurements may minimize ventilator-induced lung injury, but this has never been investigated in patients with severe acute respiratory distress syndrome supported with venovenous extracorporeal membrane oxygenation. We aimed to evaluate whether a transpulmonary pressure-guided ventilation strategy would increase the proportion of patients successfully weaned from venovenous extracorporeal membrane oxygenation support in patients with severe acute respiratory distress syndrome.

DESIGN

Single-center, prospective, randomized controlled trial.

SETTING

Sixteen-bed, respiratory ICU at a tertiary academic medical center.

PATIENTS

Severe acute respiratory distress syndrome patients receiving venovenous extracorporeal membrane oxygenation.

INTERVENTIONS

One-hundred four patients were randomized to transpulmonary pressure-guided ventilation group (n = 52) or lung rest strategy group (n = 52) groups. Two patients had cardiac arrest during establishment of venovenous extracorporeal membrane oxygenation in the lung rest group did not receive the assigned intervention. Thus, 102 patients were included in the analysis.

MEASUREMENTS AND MAIN RESULTS

The proportion of patients successfully weaned from venovenous extracorporeal membrane oxygenation in the transpulmonary pressure-guided group was significantly higher than that in the lung rest group (71.2% vs 48.0%; p = 0.017). Compared with the lung rest group, driving pressure, tidal volumes, and mechanical power were significantly lower, and positive end-expiratory pressure was significantly higher, in the transpulmonary pressure-guided group during venovenous extracorporeal membrane oxygenation support. In the transpulmonary pressure-guided group, levels of interleukin-1β, interleukin-6, and interleukin-8 were significantly lower, and interleukin-10 was significantly higher, than those of the lung rest group over time. Lung density was significantly lower in the transpulmonary pressure-guided group after venovenous extracorporeal membrane oxygenation support than in the lung rest group.

CONCLUSIONS

A transpulmonary pressure-guided ventilation strategy could increase the proportion of patients with severe acute respiratory distress syndrome successfully weaned from venovenous extracorporeal membrane oxygenation.